Multimedia Tools and Applications

, Volume 76, Issue 3, pp 3829–3850 | Cite as

Unified entropy-based sorting for reversible data hiding

Article
  • 141 Downloads

Abstract

Reversible data hiding schemes compete against each other for a sharply distributed prediction error histogram, usually realized by utilizing prediction strategies together with sorting technique that aims to estimate the local context complexity for each pixel to optimize the embedding order. Sorting techniques benefit prediction a lot by picking out pixels located in smooth areas. In this paper, a novel entropy-based sorting (EBS) scheme is proposed for reversible data hiding, which uses entropy measurement to characterize local context complexity for each image pixel. Futhermore, by extending the EBS technique to the two-dimensional case, it shows generalized abilities for multi-dimensinal RDH scenarios. Additionally, a new gradient-based tracking and weighting (GBTW) pixel prediction method is introduced to be combined with the EBS technique. Experimental results apparently indicate that our proposed method outperforms the previous state-of-arts counterparts significantly in terms of both the prediction accuracy and the overall embedding performance.

Keywords

Reversible data hiding Entropy-based sorting Gradient-based tracking and weighting 

References

  1. 1.
    Afsharizadeh M, Mohammadi M (2013) A reversible watermarking prediction based scheme using a new sorting and technique. In: 10th international conference on information security and cryptology (ISC), pp 98–104Google Scholar
  2. 2.
    Armando Domínguez-Molina J, González-Farías G A practical procedure to estimate the shape parameter in the generalized Gaussian distribution Cimat tech rep.I-01-08-eng.pdf.[Online]http://www.cimat.mx/reportes/enlinea/I-01-18-eng.pdf
  3. 3.
    Coltuc D (2012) Low distortion transform for reversible watermarking. IEEE Trans Image Process 21(1):412–417MathSciNetCrossRefGoogle Scholar
  4. 4.
    Coltuc D, Dragoi I-C (2013) Context embedding for raster-scan rhombus based reversible watermarking. In: Proceedings of the ACM IH&MMSEC, pp 215–220Google Scholar
  5. 5.
    Dragoi C, Coltuc D (2012) Improved rhombus interpolation for reversible watermarking by difference expansion. In: Proceedings of the EUSIPCO, pp 1688–1692Google Scholar
  6. 6.
    Dragoi C, Coltuc D (2014) Gradient based prediction for reversible watermarking by difference expansion. In: IH&MMSec’14, pp 35–41Google Scholar
  7. 7.
    Dragoi C, Coltuc D (2014) Local-prediction-based difference expansion reversible watermarking. IEEE Trans Image Process 23(4):1779–1781MathSciNetCrossRefGoogle Scholar
  8. 8.
    Fallahpour M (2008) Reversible image data hiding based on gradient adjusted prediction. IEICE Electron Exp 5(20):870–876CrossRefGoogle Scholar
  9. 9.
    Giller G (2005) A generalized error distribution. Available at SSRN. doi:http://dx.doi.org/http://ssrn.com/abstract=2265027 or 10.2139/ssrn.2265027
  10. 10.
    Hu X, Zhang W, Hu X, Yu N, Zhao X, Li F (2013) Fast estimation of optimal marked-signal distribution for reversible data hiding. IEEE Trans Inf Forensics Secur 8(5):779–788CrossRefGoogle Scholar
  11. 11.
    Hu Y, Lee H-K, Li J (2009) DE-based reversible data hiding with improved overflow location map. IEEE Trans Circuits Syst Video Technol 19(2):250–260CrossRefGoogle Scholar
  12. 12.
    Kamstra LHJ, Heijmans A M (2005) Reversible data embedding into images using wavelet techniques and sorting. IEEE Trans Image Process 14(12):2082–2090MathSciNetCrossRefGoogle Scholar
  13. 13.
    Lee S, Yoo CD, Kalker T (2007) Reversible image watermarking based on integer-to-integer wavelet transform. IEEE Trans Inform Forensics Secur 2(3):321–330CrossRefGoogle Scholar
  14. 14.
    Li X, Yang B, Zeng T (2011) Efficient reversible watermarking based on adaptive prediction-error expansion and pixel selection. IEEE Trans Image Process 20 (12):3524–3533MathSciNetCrossRefGoogle Scholar
  15. 15.
    Lin S-J, Chung W-H (2012) The scalar scheme for reversible information-embedding in gray-scale signals: capacity evaluation and code constructions. IEEE Trans Inf Forensics Secur 7(4):1155–1167CrossRefGoogle Scholar
  16. 16.
    Luo L, Chen Z, Chen M, Zeng X, Xiong Z (2010) Reversible image watermarking using interpolation technique. IEEE Trans Inf Forensics Secur 5 (1):187–193CrossRefGoogle Scholar
  17. 17.
    Nadarajah S (2005) A generalized normal distribution. J Appl Stat 32(7):685–694MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Ni Z, Shi Y, Ansari N, Wei S (2006) Reversible data hiding. IEEE Trans Circ Syst Video Technol 16(3):354–362CrossRefGoogle Scholar
  19. 19.
    Ou B, Li X, Zhao Y, Ni R (2013) Pairwise prediction-error expansion for efficient reversible data hiding. IEEE Trans Image Process 22(12):5110–5121MathSciNetCrossRefGoogle Scholar
  20. 20.
    Qin C, Chang C-C, Huang Y-H, Liao L-T (2013) An inpaintingassisted reversible steganographic scheme using histogram shifting mechanism. IEEE Trans Circ Syst Video Technol 23(7):1109–1118CrossRefGoogle Scholar
  21. 21.
    Rad RM, Attar A (2013) A predictive algorithm for multimedia data compression. Multimed Syst 19(2):103–115CrossRefGoogle Scholar
  22. 22.
    Rényi A (1961) On measures of entropy and information. In: Proceedings of the 4th Berkeley symposium on mathematical statistics and probability, vol I, pp 547–561Google Scholar
  23. 23.
    Sachnev V, Kim HJ, Nam J, Suresh S, Shi Y (2009) Reversible watermarking algorithm using sorting and prediction. IEEE Trans Circuits Syst Video Technol 19(7):989–999CrossRefGoogle Scholar
  24. 24.
    Shannon CE (1948) A mathematical theory of communication. Bell Syst Tech J 27:379–423MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Thodi D M, Rodriguez J J (2007) Expansion embedding techniques for reversible watermarking. IEEE Trans Image Process 16(3):721–730MathSciNetCrossRefGoogle Scholar
  26. 26.
    Tian J (2003) Reversible data embedding using a difference expansion. IEEE Trans Circuits Syst Video Technol 13(8):890–896CrossRefGoogle Scholar
  27. 27.
    Wang X, Li X, Yang B, Guo Z (2010) Effcient generalized integer transform for reversible watermarking. IEEE Signal Process Lett 17(6):567–570CrossRefGoogle Scholar
  28. 28.
    Wu H-T, Huang J (2012) Reversible image watermarking on prediction errors by efficient histogram modification. Signal Process 92(12):3000–3009CrossRefGoogle Scholar
  29. 29.
    Zhang W, Chen B, Yu N (2011) Capacity-approaching codes for reversible data hiding. In: Proceedings of the 13th information hiding conference, LNCS 6958, pp 255–269Google Scholar
  30. 30.
    Zhang W, Chen B, Yu N (2012) Improving various reversible data hiding schemes via optimal codes for binary covers. IEEE Trans Image Process 21(6):2991–3003MathSciNetCrossRefGoogle Scholar
  31. 31.
    Zhang W, Hu X, Li X, Yu N (2013) Recursive histogram modification: establishing equivalency between reversible data hiding and lossless data compression. IEEE Trans Image Process 22(7):2775–2785CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Jiajia Xu
    • 1
  • Weiming Zhang
    • 1
  • Ruiqi Jiang
    • 1
  • Nenghai Yu
    • 1
  1. 1.Nenghai Yu are with CAS Key Laboratory of Electro-magnetic Space InformationUniversity of Science and Technology of ChinaHefeiChina

Personalised recommendations