Multimedia Tools and Applications

, Volume 76, Issue 3, pp 3761–3782 | Cite as

Data hiding in AMBTC images using quantization level modification and perturbation technique

  • Wien Hong
  • Tung Shou Chen
  • Zhaoxia Yin
  • Bin Luo
  • Yuanbo Ma


A novel data hiding method for Absolute Moment Block Truncation Coding (AMBTC) compressed image based on quantization level modification is proposed. Blocks of AMBTC-compressed image are classified into two categories, namely smooth and complex, according to a predefined threshold. For smooth blocks, the bitmap is replaced by secret data for data embedment. Meanwhile, the corresponding quantization levels are modified to achieve a minimum distortion. If a larger payload is required, the modified quantization levels can be further perturbed for carrying two additional bits. If the blocks are complex, one data bit can be embedded with no distortion by swapping the values of the two quantization levels together with bitmap flipping. In addition, a suppress threshold mechanism is used to prevent from the application of the perturbation technique at low payload to maintain the image quality. The proposed method minimizes the distortion of each stego block while ensuring high payload, thus the embedding efficiency can be enhanced. Experimental results demonstrate the improvement of the proposed method compared with other related state-of-art works.


Block truncation coding Data hiding Threshold mechanism 


  1. 1.
    Bai J, Chang CC (2016) A high payload steganographic scheme for compressed images with hamming code. Int J Netw Secur 18(6):1122–1129Google Scholar
  2. 2.
  3. 3.
    Chang CC, Nguyena TY, Lin CC (2013) A novel VQ-based reversible data hiding scheme by using hybrid encoding strategies. J Syst Softw 86(2):389–402CrossRefGoogle Scholar
  4. 4.
    Chen J, Hong W, Chen TS, Shiu CW (2010) Steganography for BTC compressed images using no distortion technique. Imaging Sci J 58(4):177–185CrossRefGoogle Scholar
  5. 5.
    Chen B, Shu H, Coatrieux G, Chen SX, Coatrieux JL (2015) Color image analysis by quaternion-type moments. J Math Imaging Vision 51(1):124–144MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Chuang JC, Chang CC (2006) Using a simple and fast image compression algorithm to hide secret information. Int J Comput Appl 28(4):329–333Google Scholar
  7. 7.
    Delp EJ, Mitchell OR (1979) Image compression using block truncation coding. IEEE Trans Commun 27(9):1335–1342CrossRefGoogle Scholar
  8. 8.
    Fridrich J, Goljan M, Du R (2001) Reliable detection of LSB steganography in color and grayscale images. In: Proceedings of the International Workshop on Multimedia and Security, pp 27–30Google Scholar
  9. 9.
    Fu Z, Ren K, Shu J, Sun X, Huang F (2015) Enabling personalized search over encrypted outsourced data with efficiency improvement. IEEE Trans Parallel Distrib Syst. doi:10.1109/TPDS.2015.2506573 Google Scholar
  10. 10.
    Gu B, Sheng VS, Tay KY, Romano W, Li S (2015) Incremental support vector learning for ordinal regression. IEEE Trans Neural Netw Learn Syst 26(7):1403–1416MathSciNetCrossRefGoogle Scholar
  11. 11.
    Gu B, Sheng VS, Wang Z, Ho D, Osman S, Li S (2015) Incremental learning for v-support vector regression. Neural Netw 67:140–150CrossRefGoogle Scholar
  12. 12.
    Guo P, Wang J, Xue HG, Chang SK, Kim JU (2014) A variable threshold-value authentication architecture for wireless mesh networks. J Internet Technol 15(6):929–936Google Scholar
  13. 13.
    Hong W (2013) Adaptive image data hiding in edges using patched reference table and pair-wise embedding technique. Inf Sci 221:473–489CrossRefGoogle Scholar
  14. 14.
    Hong W, Chen TS (2012) A novel data embedding method using adaptive pixel pair matching. IEEE Trans Inf Forensics Secur 7(1):176–184CrossRefGoogle Scholar
  15. 15.
    Hong W, Chen J, Chen TS, Shiu CW (2011) Steganography for block truncation coding compressed images using hybrid embedding scheme. Int J Innov Comput Inf Control 7(2):1–11Google Scholar
  16. 16.
    Lema MD, Mitchell OR (1984) Absolute moment block truncation coding and its application to color image. IEEE Trans Commun 32(10):1148–1157CrossRefGoogle Scholar
  17. 17.
    Li J, Li X, Yang B, Sun X (2015) Segmentation-based image copy-move forgery detection scheme. IEEE Trans Inf Forensics Secur 10(3):507–518CrossRefGoogle Scholar
  18. 18.
    Ou D, Sun W (2015) High payload image steganography with minimum distortion based on absolute moment block truncation coding. Multimed Tools Appl 74(21):9117–9139CrossRefGoogle Scholar
  19. 19.
    Pan Z, Zhang Y, Kwong S (2015) Efficient motion and disparity estimation optimization for low complexity multiview video coding. IEEE Trans Broadcast 61(2):166–176CrossRefGoogle Scholar
  20. 20.
    Pandey R, Singh AK, Kumar B, Mohan A (2016) Iris based secure NROI multiple eye image watermarking for teleophthalmology. Multimed Tools Appl. doi:10.1007/s11042-016-3536-6 Google Scholar
  21. 21.
    Parah SA, Sheikh JA, Ahad F, Loan NA, Bhat GM (2015) Information hiding in medical images: a robust medical image watermarking system for E-healthcare. Multimed Tools Appl 1–35Google Scholar
  22. 22.
    Parah SA, Sheikh JA, Assad UI, Bhat GM (2015) Hiding in encrypted images: a three tier security data hiding system. Multidim Syst Sign Process. doi:10.1007/s11045-015-0358-z Google Scholar
  23. 23.
    Parah SA, Sheikh JA, Hafiz AM, Bhat GM (2014) Data hiding in scrambled images: a new double layer security data hiding technique. Comput Electr Eng 40(1):70–82CrossRefGoogle Scholar
  24. 24.
    Parah SA, Sheikh JA, Hafiz AM, Bhat GM (2014) A secure and robust information hiding technique for covert communication. Int J Electron 102(8):1253–1266CrossRefGoogle Scholar
  25. 25.
    Parah SA, Sheikh JA, Loan NA, Bhat GM (2016) Robust and blind watermarking technique in DCT domain using inter-block coefficient differencing. Digital Signal Process 53:11–24CrossRefGoogle Scholar
  26. 26.
    Parah SA, Sheikh JA, Bhat GM (2014) A secure and efficient spatial domain data hiding technique based on pixel adjustment. Am J Eng Technol Res 14(2):38–44Google Scholar
  27. 27.
    Qian Z, Zhang X (2014) Improved anti-forensics of JPEG compression. J Syst Softw 91(4):100–108MathSciNetCrossRefGoogle Scholar
  28. 28.
    Ren Y, Shen J, Wang J, Han J, Lee S (2015) Mutual verifiable provable data auditing in public cloud storage. J Internet Technol 16(2):317–324Google Scholar
  29. 29.
    Singh AK (2016) Improved hybrid technique for robust and imperceptible multiple watermarking using digital images. Multimed Tools Appl. doi:10.1007/s11042-016-3514-z Google Scholar
  30. 30.
    Singh AK, Dave M, Mohan A (2015) Multilevel encrypted text watermarking on medical images using spread-spectrum in DWT domain. Wirel Pers Commun 83(3):2133–2150. doi:10.1007/s11277-015-2505-0 CrossRefGoogle Scholar
  31. 31.
    Singh AK, Kumar B, Dave M, Mohan A (2015) Robust and imperceptible dual watermarking for telemedicine applications. Wirel Pers Commun 80(4):1415–1433. doi:10.1007/s11277-014-2091-6 CrossRefGoogle Scholar
  32. 32.
    The USC-SIPI Image Database. Available:
  33. 33.
    Wang Z, Bovik AC, Sheikh HR, Simoncelli EP (2004) Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process 13(4):600–612CrossRefGoogle Scholar
  34. 34.
    Wen X, Shao L, Xue Y, Fang W (2015) A rapid learning algorithm for vehicle classification. Inf Sci 295:395–406CrossRefGoogle Scholar
  35. 35.
    Xia Z, Wang X, Sun X, Liu Q, Xiong N (2016) Steganalysis of LSB matching using differences between nonadjacent pixels. Multimed Tools Appl 75(4):1947–1962CrossRefGoogle Scholar
  36. 36.
    Xia Z, Wang X, Sun X, Wang B (2014) Steganalysis of least significant bit matching using multi-order differences. Secur Commun Netw 7(8):1283–1291CrossRefGoogle Scholar
  37. 37.
    Xia Z, Wang X, Sun X, Wang Q (2016) A secure and dynamic multi-keyword ranked search scheme over encrypted cloud data. IEEE Trans Parallel Distrib Syst 27(2):340–352CrossRefGoogle Scholar
  38. 38.
    Xie S, Wang Y (2014) Construction of tree network with limited delivery latency in homogeneous wireless sensor networks. Wirel Pers Commun 78(1):231–246CrossRefGoogle Scholar
  39. 39.
    Zargar AJ, Singh AK (2016) Robust and imperceptible image watermarking in DWT-BTC domain. Int J Electron Secur Digit Forensics 8(1):53–62CrossRefGoogle Scholar
  40. 40.
    Zheng YH, Jeon B, Xu DH, Wu QMJ, Zhang H (2015) Image segmentation by generalized hierarchical fuzzy C-means algorithm. J Intell Fuzzy Syst 28(2):961–973Google Scholar
  41. 41.
    Zielińska E, Mazurczyk W, Szczypiorski K (2014) Trends in steganography. Commun ACM 57(3):86–95CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.School of Computer and SoftwareNanjing University of Information Science and TechnologyNanjingChina
  2. 2.Department of Computer Science and Information EngineeringNational Taichung University of Science and TechnologyTaichungTaiwan
  3. 3.Key Laboratory of Intelligent Computing and Signal Processing Ministry of EducationAnhui UniversityHefeiChina
  4. 4.Department of Electronic Communication and Software EngineeringNanfang College of Sun Yat-Sen UniversityGuangzhouChina

Personalised recommendations