Multimedia Tools and Applications

, Volume 76, Issue 4, pp 5399–5417 | Cite as

A comparative study of user intention to recommend content on mobile social networks

  • Shuchih Ernest Chang
  • Wei-Cheng Shen
  • Chun-Hsiu Yeh


This study aims to explore user intention to recommend multimedia content on mobile social networks. To better understand user behavioral differences in content recommendations, this study utilizes user behavioral responses on social network services to determine heavy and light users. By analyzing data collected from 258 respondents, the findings reveal that the factors that influence intention to recommend vary among heavy and light users. First, trust, subjective norm, perceived ease of use, and perceived usefulness are considered as predictors for heavy users. Second, subjective norm, trust, perceived ease of use, and perceived usefulness are not influencing factors relative to recommendation intention for light users. Third, trust facilitates heavy users to share their content recommendations on mobile social networks. From theoretical perspectives, the results confirm that dynamic trust transfer could be integrated using the theory of planned behavior with a technology acceptance model. Considering practical implications, our findings regarding the prediction of heavy users provide business insights to content recommendation service. Our study highlights trust strategies related to migrating light users to heavy users. Overall, mobile social network providers must consider user technology perception enhancements and reduce trust concerns. Our findings contribute to theoretical applications and provide practical implications for social service providers in relation to social applications on mobile devices.


Technology acceptance model (TAM) Theory of planned behavior (TPB) Trust Recommendation intention Mobile social networks 


  1. 1.
    Adzic V, Kalva H, Furht B (2011) A survey of multimedia content adaptation for mobile devices. Multimed Tools Appl 51:379–396. doi:10.1007/s11042-010-0669-x CrossRefGoogle Scholar
  2. 2.
    Ajzen I (1985) From intentions to actions: a theory of planned behavior. Act Contrl From Cogn Behav 11–39. doi: 10.1007/978-3-642-69746-3_2
  3. 3.
    Ajzen I (1991) The theory of planned behavior. Organ Behav Hum Decis Process 50:179–211. doi:10.1016/0749-5978(91)90020-T CrossRefGoogle Scholar
  4. 4.
    Al Mutawa N, Baggili I, Marrington A (2012) Forensic analysis of social networking applications on mobile devices. Digit Investig 9:S24–S33. doi:10.1016/j.diin.2012.05.007 CrossRefGoogle Scholar
  5. 5.
    Al-Debei MM, Al-Lozi E, Papazafeiropoulou A (2013) Why people keep coming back to Facebook: explaining and predicting continuance participation from an extended theory of planned behaviour perspective. Decis Support Syst 55:43–54. doi:10.1016/j.dss.2012.12.032 CrossRefGoogle Scholar
  6. 6.
    Boakye KG (2015) Factors influencing mobile data service (MDS) continuance intention: an empirical study. Comput Human Behav 50:125–131. doi:10.1016/j.chb.2015.04.008 CrossRefGoogle Scholar
  7. 7.
    Boyd DM, Ellison NB (2007) Social network sites: definition, history, and scholarship. J Comput Commun 13:210–230. doi:10.1111/j.1083-6101.2007.00393.x Google Scholar
  8. 8.
    Braun MT (2013) Obstacles to social networking website use among older adults. Comput Human Behav 29:673–680. doi:10.1016/j.chb.2012.12.004 CrossRefGoogle Scholar
  9. 9.
    Casaló LV, Flavián C, Guinalíu M (2011) Understanding the intention to follow the advice obtained in an online travel community. Comput Human Behav 27:622–633. doi:10.1016/j.chb.2010.04.013 CrossRefGoogle Scholar
  10. 10.
    Chang CW, Chen GM (2014) College students’ disclosure of location-related information on Facebook. Comput Human Behav 35:33–38. doi:10.1016/j.chb.2014.02.028 CrossRefGoogle Scholar
  11. 11.
    Chang I-C, Liu C-C, Chen K (2014) The effects of hedonic/utilitarian expectations and social influence on continuance intention to play online games. Internet Res 24:21–45. doi:10.1108/IntR-02-2012-0025 CrossRefGoogle Scholar
  12. 12.
    Chang SE, Pan Y-HV (2011) Exploring factors influencing mobile users’ intention to adopt multimedia messaging service. Behav Inf Technol 30:659–672. doi:10.1080/01449290903377095 CrossRefGoogle Scholar
  13. 13.
    Chang SE, Shen W, Liu AY (2016) Why mobile users trust smartphone social networking services? a PLS-SEM approach. J Bus Res. doi:10.1016/j.jbusres.2016.04.048 Google Scholar
  14. 14.
    Chang YP, Zhu DH (2011) Understanding social networking sites adoption in China: a comparison of pre-adoption and post-adoption. Comput Human Behav 27:1840–1848. doi:10.1016/j.chb.2011.04.006 CrossRefGoogle Scholar
  15. 15.
    Chen Y-H, Barnes S (2007) Initial trust and online buyer behaviour. Ind Manag Data Syst 107:21–36. doi:10.1108/02635570710719034 CrossRefGoogle Scholar
  16. 16.
    Cheung CMK, Lee MKO (2010) A theoretical model of intentional social action in online social networks. Decis Support Syst 49:24–30. doi:10.1016/j.dss.2009.12.006 CrossRefGoogle Scholar
  17. 17.
    Chin WW (1998) The partial least squares approach to structural equation modeling. Mod Methods Bus Res; 295–336Google Scholar
  18. 18.
    Chin WW, Marcolin BL, Newsted PR (2003) A partial least squares latent variable modeling approach for measuring interaction effects: results from a Monte Carlo simulation study and an electronic-mail emotion/adoption study. Inf Syst Res 14:189–217. doi:10.1287/isre. CrossRefGoogle Scholar
  19. 19.
    Colomo-Palacios R, García-Peñalvo FJ, Stantchev V, Misra S (2016) Towards a social and context-aware mobile recommendation system for tourism. Pervasive Mob Comput. doi:10.1016/j.pmcj.2016.03.001 Google Scholar
  20. 20.
    Costa-Montenegro E, Barragáns-Martínez AB, Rey-López M (2012) Which App? a recommender system of applications in markets: implementation of the service for monitoring users’ interaction. Expert Syst Appl 39:9367–9375. doi:10.1016/j.eswa.2012.02.131 CrossRefGoogle Scholar
  21. 21.
    Cui Y, Mikko H (2013) A novel mobile device user interface with integrated social networking services. Int J Hum Comput Stud 71:919–932. doi:10.1016/j.ijhcs.2013.03.004 CrossRefGoogle Scholar
  22. 22.
    Curras-Perez R, Ruiz-Mafe C, Sanz-Blas S (2014) Determinants of user behaviour and recommendation in social networks. Ind Manag Data Syst 114:1477–1498. doi:10.1108/IMDS-07-2014-0219 CrossRefGoogle Scholar
  23. 23.
    Davis FD (1989) Perceived ease of use, and user acceptance of information technology. MIS Q 13:319–340. doi:10.2307/249008 CrossRefGoogle Scholar
  24. 24.
    Davis FD (1989) Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Q 13:319–340. doi:10.2307/249008 CrossRefGoogle Scholar
  25. 25.
    Davis FD, Bagozzi RP, Warshaw PR (1989) User acceptance of computer technology: a comparison of two theoretical models. Manag Sci 35:982–1003. doi:10.1287/mnsc.35.8.982 CrossRefGoogle Scholar
  26. 26.
    Emmanouilides C, Hammond K (2000) Internet usage: predictors of active users and frequency of use. J Interact Mark 14:17–32. doi:10.1002/(SICI)1520-6653(200021)14:2<17::AID-DIR2>3.0.CO;2-E CrossRefGoogle Scholar
  27. 27.
    Fornell C, Larcker DF (1981) Evaluating structural equation models with unobservable variables and measurement error. J Mark Res 18:39. doi:10.2307/3151312 CrossRefGoogle Scholar
  28. 28.
    Gao L, Bai X (2014) An empirical study on continuance intention of mobile social networking services. Asia Pacific J Mark Logist 26:168–189. doi:10.1108/APJML-07-2013-0086 CrossRefGoogle Scholar
  29. 29.
    Gefen D (2000) Structural equation modeling and regression : guidelines for research practice. Struct Equ Model 4:7. doi: Scholar
  30. 30.
    Gefen D, Karahanna E, Straub D (2003) Trust and TAM in online shopping: an integrated model. MIS Q 27:51–90. doi:10.2307/30036519 Google Scholar
  31. 31.
    Girolami M, Chessa S, Caruso A (2015) On service discovery in mobile social networks: Survey and perspectives. Comput Netw 88:51–71. doi:10.1016/j.comnet.2015.06.006 CrossRefGoogle Scholar
  32. 32.
    Hair JF, Ringle CM, Sarstedt M (2011) PLS-SEM: indeed a silver bullet. J Mark Theory Pract 19:139–152. doi:10.2753/MTP1069-6679190202 CrossRefGoogle Scholar
  33. 33.
    Harrison McKnight D, Choudhury V, Kacmar C (2002) The impact of initial consumer trust on intentions to transact with a web site: a trust building model. J Strateg Inf Syst 11:297–323. doi:10.1016/S0963-8687(02)00020-3 CrossRefGoogle Scholar
  34. 34.
    Heidemann J, Klier M, Probst F (2012) Online social networks: a survey of a global phenomenon. Comput Netw 56:3866–3878. doi:10.1016/j.comnet.2012.08.009 CrossRefGoogle Scholar
  35. 35.
    Holzer A, Ondrus J (2011) Mobile application market: a developer’s perspective. Telemat Inform 28:22–31. doi:10.1016/j.tele.2010.05.006 CrossRefGoogle Scholar
  36. 36.
    Hsiao C-H, Chang J-J, Tang K-Y (2016) Exploring the influential factors in continuance usage of mobile social Apps: satisfaction, habit, and customer value perspectives. Telemat Inform 33:342–355. doi:10.1016/j.tele.2015.08.014 CrossRefGoogle Scholar
  37. 37.
    Hsu CL, Lin JCC (2008) Acceptance of blog usage: the roles of technology acceptance, social influence and knowledge sharing motivation. Inf Manag 45:65–74. doi:10.1016/ CrossRefGoogle Scholar
  38. 38.
    Hsu C-L, Lin JC-C (2015) What drives purchase intention for paid mobile apps? – an expectation confirmation model with perceived value. Electron Commer Res Appl 14:46–57. doi:10.1016/j.elerap.2014.11.003 CrossRefGoogle Scholar
  39. 39.
    Hsu C-L, Lin JC-C (2016) Effect of perceived value and social influences on mobile app stickiness and in-app purchase intention. Technol Forecast Soc Change 108:42–53. doi:10.1016/j.techfore.2016.04.012 CrossRefGoogle Scholar
  40. 40.
    Huang Y, Basu C, Hsu MK (2010) Exploring motivations of travel knowledge sharing on social network sites: an empirical investigation of U.S. college students. J Hosp Mark Manag 19:717–734. doi:10.1080/19368623.2010.508002 Google Scholar
  41. 41.
    Jabeur N, Zeadally S, Sayed B (2013) Mobile social networking applications. Commun ACM 56:71–79. doi:10.1145/2428556.2428573 CrossRefGoogle Scholar
  42. 42.
    Jang Y-T, Chang SE, Chen P-A (2015) Exploring social networking sites for facilitating multi-channel retailing. Multimed Tools Appl 74:159–178. doi:10.1007/s11042-013-1430-z CrossRefGoogle Scholar
  43. 43.
    Kock N (2015) Common method bias in PLS-SEM: a full collinearity assessment approach. Int J e-Collab 11:1–10. doi:10.4018/ijec.2015100101 Google Scholar
  44. 44.
    Koh J, Kim Y-G, Butler B, Bock G-W (2007) Encouraging participation in virtual communities. Commun ACM 50:68–73. doi:10.1145/1216016.1216023 CrossRefGoogle Scholar
  45. 45.
    Kwon SJ, Park E, Kim KJ (2014) What drives successful social networking services? a comparative analysis of user acceptance of Facebook and Twitter. Soc Sci J 51:534–544. doi:10.1016/j.soscij.2014.04.005 CrossRefGoogle Scholar
  46. 46.
    Lankton NK, McKnight DH (2011) What does it mean to trust facebook? ACM SIGMIS Database 42:32. doi:10.1145/1989098.1989101 CrossRefGoogle Scholar
  47. 47.
    Lee T (2005) The impact of perceptions of interactivity on customer trust and transaction intentions in mobile commerce. J Electron Commer Res 6:165–180Google Scholar
  48. 48.
    Lee MR, Yen DC, Hsiao CY (2014) Understanding the perceived community value of Facebook users. Comput Human Behav 35:350–358. doi:10.1016/j.chb.2014.03.018 CrossRefGoogle Scholar
  49. 49.
    Li X, Hess TJ, Valacich JS (2008) Why do we trust new technology? a study of initial trust formation with organizational information systems. J Strateg Inf Syst 17:39–71. doi:10.1016/j.jsis.2008.01.001 CrossRefGoogle Scholar
  50. 50.
    Liao C, Liu C-C, Chen K (2011) Examining the impact of privacy, trust and risk perceptions beyond monetary transactions: an integrated model. Electron Commer Res Appl 10:702–715. doi:10.1016/j.elerap.2011.07.003 CrossRefGoogle Scholar
  51. 51.
    Lien CH, Cao Y (2014) Examining WeChat users’ motivations, trust, attitudes, and positive word-of-mouth: evidence from China. Comput Human Behav 41:104–111. doi:10.1016/j.chb.2014.08.013 CrossRefGoogle Scholar
  52. 52.
    Lin X, Zhang D, Li Y (2016) Delineating the dimensions of social support on social networking sites and their effects: a comparative model. Comput Human Behav 58:421–430. doi:10.1016/j.chb.2016.01.017 CrossRefGoogle Scholar
  53. 53.
    Lippert SK (2007) Investigating postadoption utilization: an examination into the role of interorganizational and technology trust. IEEE Trans Eng Manag 54:468–483. doi:10.1109/TEM.2007.900792 CrossRefGoogle Scholar
  54. 54.
    Lu J, Liu C, Yu CS, Wang K (2008) Determinants of accepting wireless mobile data services in China. Inf Manag 45:52–64. doi:10.1016/ CrossRefGoogle Scholar
  55. 55.
    Lu H, Yu‐Jen Su P (2009) Factors affecting purchase intention on mobile shopping web sites. Internet Res 19:442–458. doi:10.1108/10662240910981399 CrossRefGoogle Scholar
  56. 56.
    Luo X (2002) Trust production and privacy concerns on the Internet: a framework based on relationship marketing and social exchange theory. Ind Mark Manag 31:111–118. doi:10.1016/S0019-8501(01)00182-1 CrossRefGoogle Scholar
  57. 57.
    Mendelson AL, Papacharissi Z (2010) Look at us: collective narcissism in college student facebook photo galleries. networked self identity, community. Cult Soc Netw Sites 1974:1–37Google Scholar
  58. 58.
    Naaman M (2012) Social multimedia: highlighting opportunities for search and mining of multimedia data in social media applications. Multimed Tools Appl 56:9–34. doi:10.1007/s11042-010-0538-7 CrossRefGoogle Scholar
  59. 59.
    Nikou S, Bouwman H (2014) Ubiquitous use of mobile social network services. Telemat Inform 31:422–433. doi:10.1016/j.tele.2013.11.002 CrossRefGoogle Scholar
  60. 60.
    Okazaki S, Yagüe MJ (2012) Responses to an advergaming campaign on a mobile social networking site: An initial research report. Comput Human Behav 28:78–86. doi:10.1016/j.chb.2011.08.013 CrossRefGoogle Scholar
  61. 61.
    Ortega Egea JM, Román González MV (2011) Explaining physicians’ acceptance of EHCR systems: an extension of TAM with trust and risk factors. Comput Human Behav 27:319–332. doi:10.1016/j.chb.2010.08.010 CrossRefGoogle Scholar
  62. 62.
    Ou CX, Sia CL (2010) Consumer trust and distrust: An issue of website design. Int J Hum Comput Stud 68:913–934. doi:10.1016/j.ijhcs.2010.08.003 CrossRefGoogle Scholar
  63. 63.
    Pavlou PA, Gefen D (2004) Building effective online marketplaces with institution-based trust. Inf Syst Res 15:37–59. doi:10.1287/isre.1040.0015 CrossRefGoogle Scholar
  64. 64.
    Rauniar R, Rawski G, Yang J, Johnson B (2014) Technology acceptance model (TAM) and social media usage: an empirical study on Facebook. J Enterp Inf Manag 27:6–30. doi:10.1108/JEIM-04-2012-0011 CrossRefGoogle Scholar
  65. 65.
    Ringle CM, Sarstedt M, Straub D (2012) A critical look at the use of PLS-SEM in MIS quarterly. MIS Q 36:iii–xiv. doi:10.3200/JOEB.79.4.213-216 Google Scholar
  66. 66.
    Sanchez F, Barrilero M, Uribe S et al (2012) Social and content hybrid image recommender system for mobile social networks. Mob Netw Appl 17:782–795. doi:10.1007/s11036-012-0399-6 CrossRefGoogle Scholar
  67. 67.
    Shin DH (2010) The effects of trust, security and privacy in social networking: a security-based approach to understand the pattern of adoption. Interact Comput 22:428–438. doi:10.1016/j.intcom.2010.05.001 CrossRefGoogle Scholar
  68. 68.
    Suki NM (2012) Correlations of perceived flow, perceived system quality, perceived information quality, and perceived user trust on mobile Social Networking Service (SNS) users’ loyalty. J Inf Technol Res 5:1–14. doi:10.4018/jitr.2012040101 CrossRefGoogle Scholar
  69. 69.
    Tan X, Qin L, Kim Y, Hsu J (2012) Impact of privacy concern in social networking web sites. Internet Res 22:211–233. doi:10.1108/10662241211214575 CrossRefGoogle Scholar
  70. 70.
    Taylor S, Todd P (1995) Assessing IT usage : the role of prior experience the influence of prior experience. MIS Q 19:561–570CrossRefGoogle Scholar
  71. 71.
    Tenenhaus M, Vinzi VE, Chatelin Y-M, Lauro C (2005) PLS path modeling. Comput Stat Data Anal 48:159–205. doi:10.1016/j.csda.2004.03.005 MathSciNetCrossRefMATHGoogle Scholar
  72. 72.
    Thompson RL, Higgins CA, Howell J (1991) Personal computing : toward a conceptual model of utilization. MIS Q 15(1):124–143. doi:10.2307/249443 CrossRefGoogle Scholar
  73. 73.
    Venkatesh V, Morris M (2000) Why dont men ever stop to ask for directions? gender, social influence, and their role in technology acceptance and usage behavior. MIS Q 24:115–139. doi:10.2307/3250981 CrossRefGoogle Scholar
  74. 74.
    Venkatesh V, Morris MG, Davis GB et al (2003) User acceptance of information technology: toward a unified view. MIS Q 27:425–478. doi:10.2307/30036540 Google Scholar
  75. 75.
    Weisberg J, Te’eni D, Arman L (2011) Past purchase and intention to purchase in e-commerce: the mediation of social presence and trust. Internet Res 21:82–96. doi:10.1108/10662241111104893 CrossRefGoogle Scholar
  76. 76.
    Wu I-L, Chen J-L (2005) An extension of trust and TAM model with TPB in the initial adoption of on-line tax: an empirical study. Int J Hum Comput Stud 62:784–808. doi:10.1016/j.ijhcs.2005.03.003 CrossRefGoogle Scholar
  77. 77.
    Xu C, Peak D, Prybutok V (2015) A customer value, satisfaction, and loyalty perspective of mobile application recommendations. Decis Support Syst 79:171–183. doi:10.1016/j.dss.2015.08.008 CrossRefGoogle Scholar
  78. 78.
    Zhao L, Lu Y, Gupta S (2012) Disclosure intention of location-related information in location-based social network services. Int J Electron Commer. doi:10.2753/JEC1086-4415160403 Google Scholar
  79. 79.
    Zhou T (2011) An empirical examination of initial trust in mobile banking. Internet Res 21:527–540. doi:10.1108/10662241111176353 CrossRefGoogle Scholar
  80. 80.
    Zhou T (2012) Examining location-based services usage from the perspectives of unified theory of acceptance and use of technology and privacy risk. J Electron Commer Res 13:135–144Google Scholar
  81. 81.
    Zhou T, Li H (2014) Understanding mobile SNS continuance usage in China from the perspectives of social influence and privacy concern. Comput Human Behav 37:283–289. doi:10.1016/j.chb.2014.05.008 CrossRefGoogle Scholar
  82. 82.
    Zhou T, Li H, Liu Y (2010) The effect of flow experience on mobile SNS users’ loyalty. Ind Manag Data Syst 110:930–946. doi:10.1108/02635571011055126 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Shuchih Ernest Chang
    • 1
  • Wei-Cheng Shen
    • 1
  • Chun-Hsiu Yeh
    • 2
    • 3
  1. 1.Institute of Technology Management, National Chung Hsing UniversityTaichung CityTaiwan
  2. 2.Department of Computer Science and EngineeringNational Chung Hsing UniversityTaichung CityTaiwan
  3. 3.Department of Information ManagementChung Chou University of Science and TechnologyYuanlin CityTaiwan

Personalised recommendations