Multimedia Tools and Applications

, Volume 76, Issue 3, pp 3255–3277 | Cite as

A service recovery method based on trust evaluation in mobile social network



Mobile social network makes users create and share multimedia contents freely and conveniently. However, some nodes in mobile social network have malicious behavior, such as discarding or tampering packet. These factors will cause service interruptions in the process of providing multimedia contents for the user. When the service interruption happens, how to choose the more reliable backup device, reduce interruption number, increase the packet transmission efficiency and improve user’s experience of sharing multimedia contents is the object of this paper. We propose a service recovery method based on trust evaluation which adopts Dempster-Shafer (D-S) evidence theory. The service requester calculates the direct trust degree and the recommended trust degree of the backup devices, then uses the evidence combination rule to calculate the comprehensive trust degree. The backup device with the highest trust value will be seclected to recover the service. The simulation results show that this method effectively improves the packet delivery ratio, reduces the service execution time and provides users with more stable multimedia contents.


Multimedia content Service recovery Trust evaluation Mobile social network 


  1. 1.
    Aivaloglou E, Gritzalis S (2010) Hybrid trust and reputation management for sensor networks. Wirel Netw 16(5):1493–1510. doi:10.1007/s11276-009-0216-8 CrossRefGoogle Scholar
  2. 2.
    Amgoth T, Jana PK (2014) Energy efficient and load balanced clustering algorithms for wireless sensor networks. Int J Inf Commun Technol 6(3–4):272–291. doi:10.1504/IJICT.2014.063216 Google Scholar
  3. 3.
    Bao FY, Chen IR, Chang MJ, Cho JH (2012) Hierarchical trust management for wireless sensor networks and its applications to trust-based routing and intrusion detection. IEEE Trans Netw Serv Manag 9(2):169–183. doi:10.1109/TCOMM.2012.031912.110179 CrossRefGoogle Scholar
  4. 4.
    Batra PK, Kant K (2016) LEACH-MAC: a new cluster head selection algorithm for wireless sensor networks. Wirel Netw 22(1):49–60. doi:10.1007/s11276-015-0951-y CrossRefGoogle Scholar
  5. 5.
    Bellavista P, Montanari R, Das SK (2013) Mobile social networking middleware: a survey. Pervasive Mob Comput 9(4):437–453. doi:10.1016/j.pmcj.2013.03.001 CrossRefGoogle Scholar
  6. 6.
    Boix EG, Carreton AL, Scholliers C, Van Cutsem T, De Meuter W, D’Hondt T (2011) Flocks: enabling dynamic group interactions in mobile social networking applications. In: 26th annual ACM symposium on applied computing, pp 425–432. doi:10.1145/1982185.1982277
  7. 7.
    Chen WY, He ZY, Ren G, Sun WW (2008) Service recovery for composite service in MANETs. In: Proceeding of IEEE international conference on wireless communication, networking and mobile computing, pp 1–4. doi:10.1109/WiCom.2008.630
  8. 8.
    Chen WY, Xu YX, Peng B, Sun WW (2008) Dynamic monitor based service recovery for composite service in MANETs. In: Proceeding of 11th IEEE international conference on communication technology, pp 557–560. doi:10.1109/ICCT.2008.4716120
  9. 9.
    Dempster A (1967) Upper and lower probabilities induced by multi-valued mapping. Ann Math Stat 38:325–339CrossRefMATHGoogle Scholar
  10. 10.
    Dooms S, De Pessemier T, Verslype D, Nelis J, De Meulenaere J, Van den Broeck W, Martens L, Develder C (2014) OMUS: an optimized multimedia service for the home environment. Multimedia Tools Appl 72(1):281–311. doi:10.1007/s11042-012-1347-y Google Scholar
  11. 11.
    Hu R, Liu JX, Liu XF (2011) A trustworthiness fusion model for service cloud platform based on D-S evidence theory. In: 11th IEEE/ACM international symposium on cluster, cloud and grid computing, pp 566–571. doi:10.1109/CCGrid.2011.31
  12. 12.
    Johnson DB, Maltz DA (1996) Dynamic source routing in ad hoc wireless networks. Mobile Comput 353:153–181CrossRefGoogle Scholar
  13. 13.
    Li L, Wang Y (2009) Trust evaluation in composite services selection and discovery. In: 2009 IEEE international conference on services computing, pp 482–485. doi:10.1109/SCC.2009.70
  14. 14.
    Li X, Qian ZZ, You I, Lu SL (2014) Towards cost efficient mobile service and information management in ubiquitous environment with cloud resource scheduling. Int J Inf Manag 34(3):319–328. doi:10.1016/j.ijinfomgt.2013.11.007 CrossRefGoogle Scholar
  15. 15.
    Maria Kalavathy G, Edison Rathinam N, Seethalakshmi P (2012) Self-adaptable media service architecture for guaranteeing reliable multimedia services. Multimedia Tools Appl 57(3):633–650. doi:10.1007/s11042-010-0664-2 CrossRefGoogle Scholar
  16. 16.
    Paul A, Rho S, Bharnitharan K (2014) Interactive scheduling for mobile multimedia service in M2M environment. Multimedia Tools Appl 71(1):235–246. doi:10.1007/s11042-013-1490-0 CrossRefGoogle Scholar
  17. 17.
    Ruocco M, Ramampiaro H (2014) A scalable algorithm for extraction and clustering of event-related pictures. Multimedia Tools Appl 70(1):55–88. doi:10.1007/s11042-012-1087-z CrossRefGoogle Scholar
  18. 18.
    Shafer G (1976) A mathematical theory of evidence. Princeton University Press, New YorkMATHGoogle Scholar
  19. 19.
    Shaikh RA, Jameel H, d’Auriol BJ, Lee H, Lee S, Song YJ (2009) Group-based trust management scheme for clustered wireless sensor networks. IEEE Trans Parallel Distrib Syst 20(11):1698–1712. doi:10.1109/TPDS.2008.258 CrossRefGoogle Scholar
  20. 20.
    Sun LL, An JW, Yang Y, Zeng M (2011) Recovery strategies for service composition in dynamic network. In: 2011 International conference on cloud and service computing, pp 60–64. doi:10.1109/CSC.2011.6138553
  21. 21.
    Wang Y, Dai GP, Hou YR (2009) Dynamic methods of trust-aware composite service selection. Chin J Comput 32(8):1668–1675. doi:10.3724/SP.J.1016.2009.01668 Google Scholar
  22. 22.
    Xia H, Jia ZP, Li X, Ju L, Sha EHM (2013) Trust prediction and trust-based source routing in mobile ad hoc networks. Ad Hoc Netw 11(7):2096–2114. doi:10.1016/j.adhoc.2012.02.009 CrossRefGoogle Scholar
  23. 23.
    Yang K, Galis A, Chen HH (2010) QoS-aware service selection algorithms for pervasive service composition in mobile wireless environments. Mobile Netw Appl 15:488–501. doi:10.1007/s11036-009-0189-y CrossRefGoogle Scholar
  24. 24.
    Yang K, Ma JF, Yang C (2011) Trusted routing based on D-S evidence theory in wireless mesh network. J Commun 32(5):89–103Google Scholar
  25. 25.
    Yang ZM, Zhang BY, Dai JP, Champion AC, Xuan D, Li D (2010) E-SmallTalker: a distributed mobile system for social networking in physical proximity. In: 2010 International conference on distributed computing systems, pp 468–477. doi:10.1109/ICDCS.2010.56
  26. 26.
    Zeng LZ, Benatallah B, Ngu AHH, Dumas M, Kalagnanam J, Chang H (2004) QoS-aware middleware for web services composition. IEEE Trans Softw Eng 30(5):311–327CrossRefGoogle Scholar
  27. 27.
    Zhang ZY (2012) Frontier and methodologies on digital rights management for multimedia social networks. Int J Digital Content Technol Appl 6:245–249. doi:10.4156/jdcta.vol6.issue9.31 Google Scholar
  28. 28.
    Zhang ZY, Wang KL (2013) A trust model for multimedia social networks. Soc Netw Anal Min 3(4):969–979. doi:10.1007/s13278-012-0078-4 CrossRefGoogle Scholar
  29. 29.
    Zhang K, Liang XH, Shen XM, Lu RX (2014) Exploiting multimedia services in mobile social networks from security and privacy perspectives. IEEE Commun Mag 52(3):58–65. doi:10.1109/MCOM.2014.6766086 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Danmei Niu
    • 1
    • 2
  • Lanlan Rui
    • 1
  • Haoqiu Huang
    • 1
  • Xuesong Qiu
    • 1
  1. 1.State Key Laboratory of Networking and Switching TechnologyBeijing University of Posts and TelecommunicationsBeijingChina
  2. 2.Information Engineering CollegeHenan University of Science and TechnologyLuoyangChina

Personalised recommendations