Multimedia Tools and Applications

, Volume 76, Issue 3, pp 3403–3433 | Cite as

A robust color image watermarking using local invariant significant bitplane histogram



Desynchronization attacks that cause displacement between embedding and detection are usually difficult for watermark to survive. It is a challenging work to design a robust image watermarking scheme against desynchronization attacks, especially for color images. In this paper, we propose a robust color image watermarking approach based on local invariant significant bitplane histogram. The novelty of the proposed approach includes: 1) A fast and effective color image feature points detector is constructed, in which probability density and color invariance model are used; 2) The fully affine invariant local feature regions are built based on probability density Hessian matrix; and 3) The invariant significant bitplane histograms are introduced to embed digital watermark. The extensive experimental works are carried out on a color image set collected from Internet, and the preliminary results show that the proposed watermarking approach can survive numerous kinds of distortions, including common image processing operations and desynchronization attacks.


Color image watermarking Desynchronization attacks Speeded-up robust features detector Color invariance model Probability density Significant bitplane histogram 


  1. 1.
    Barni M (2005) Effectiveness of exhaustive search and template matching against watermark desynchronization. IEEE Signal Process Lett 12(2):158–161MathSciNetCrossRefGoogle Scholar
  2. 2.
    Bay H, Ess A, Tuytelaars T, Gool LV (2008) Speeded up robust features (SURF. Comput Vis Image Underst 110(3):346–259CrossRefGoogle Scholar
  3. 3.
    Bhatnagar G, Wu QM, Atrey PK (2013) Secure randomized image watermarking based on singular value decomposition. ACM Trans Multimed Comput Commun Appl 10(1):1–15CrossRefGoogle Scholar
  4. 4.
    Cheddad A, Condell J, Curran K (2010) Digital image steganography: survey and analysis of current methods. Signal Process 90(3):727–752CrossRefMATHGoogle Scholar
  5. 5.
    Chen CH, Tang YL, Wang CP (2014) A robust watermarking algorithm based on salient image features. Optik-Int J Light Electron Optics 125(3):1134–1140CrossRefGoogle Scholar
  6. 6.
    Deng C, Gao XB, Li XL, Tao DC (2009) A local Tchebichef moments-based robust image watermarking. Signal Process 89(8):1531–1539CrossRefMATHGoogle Scholar
  7. 7.
    Deng C, Li J, Gao X (2010) Geometric attacks resistant image watermarking in affine covariant regions. Acta Automat Sin 26(2):221–228CrossRefGoogle Scholar
  8. 8.
    Gauglitz S, Höllerer T, Turk M (2011) Evaluation of interest point detectors and feature descriptors for visual tracking. Int J Comput Vis 94(3):335–360CrossRefMATHGoogle Scholar
  9. 9.
    Geusebroek JM, Boomgaard RV, Smeulders AWM, Geerts H (2001) Color invariance. IEEE trans. On pattern analysis and machine. Intelligence 23(12):1338–1350Google Scholar
  10. 10.
    Ji F, Deng C, An LL, Huang DY (2013) Desynchronization attacks resilient image watermarking scheme based on global restoration and local embedding. Neurocomputing 106(15):42–50CrossRefGoogle Scholar
  11. 11.
    Kaur M (2009) Robust watermarking into the color models based on the synchronization template. Int Conf Inf Multimedia Technol (ICIMT’09), Jeju Island, pp 296–300Google Scholar
  12. 12.
    Ke Q, Xie D-Q (2012) Watermarking scheme against geometrical attacks based on second generation Bandelet. Acta Automat Sin 38(10):1646–1653CrossRefGoogle Scholar
  13. 13.
    Li M, Michel KK, Dimitris AP (2013) Extracting spread-spectrum hidden data from digital media. IEEE Trans Inf Forensics Secur 8(7):1201–1209CrossRefGoogle Scholar
  14. 14.
    Li X, Sun X, Liu Q (2015a) Image integrity authentication scheme based on fixed point theory. IEEE Trans Image Process 24(2):632–645MathSciNetCrossRefGoogle Scholar
  15. 15.
    Li Y, Wang S, Tian Q (2015b) A survey of recent advances in visual feature detection. Neurocomputing 149:736–751CrossRefGoogle Scholar
  16. 16.
    Maity SP, Maity S (2013) Collusion resilient spread spectrum watermarking in M-band wavelets using GA-fuzzy hybridization. J Syst Softw 86(1):47–59CrossRefGoogle Scholar
  17. 17.
    Mathon B, Cayre F, Bas P, Macq B (2014) Optimal transport for secure spread-spectrum watermarking of still images. IEEE Trans Image Process 23(4):1694–1705MathSciNetCrossRefGoogle Scholar
  18. 18.
    Minamoto T, Ohura R (2014) A blind digital image watermarking method based on the dyadic wavelet transform and interval arithmetic. Appl Math Comput 226(1):306–319MATHGoogle Scholar
  19. 19.
    Moghaddam ME, Nemati N (2013) A robust color image watermarking technique using modified imperialist competitive algorithm. Forensic Sci Int 233(1–3):193–200CrossRefGoogle Scholar
  20. 20.
    Mohammad AA (2012) A new digital image watermarking scheme based on Schur decomposition. Multimedia Tools Appl 59(3):851–883CrossRefGoogle Scholar
  21. 21.
    Naskar R, Chakraborty RS (2013) Histogram-bin-shifting-based reversible watermarking for colour images. IET Image Process 7(2):99–110MathSciNetCrossRefGoogle Scholar
  22. 22.
    Nian G, Tang X, Wang D (2010) Geometric distortions correction scheme based on hausdorff distance for digital watermarking image. In: 2010 second international conference on multiMedia and information technology, Kaifeng, pp 43–46Google Scholar
  23. 23.
    Papakostas GA, Koulouriotis DE, Tourassis VD (2012) Performance evaluation of moment-based watermarking methods: a review. J Syst Softw 85(8):1864–1884CrossRefGoogle Scholar
  24. 24.
    Run R, Horng S, Lai J, Kao T, Chen R (2012) An improved SVD-based watermarking technique for copyright protection. Expert Syst Appl 39(1):673–689CrossRefGoogle Scholar
  25. 25.
    Sasan G, Mohammad SH, Habibollah D, Mehri O (2014) Robust watermarking against geometric attacks using partial calculation of radial moments and interval phase modulation. Inf Sci 269(10):94–105MathSciNetGoogle Scholar
  26. 26.
    Seo JS, Yoo CD (2006) Image watermarking based on invariant regions of scale-space representation. IEEE trans. On. Signal Process 54(4):1537–1549Google Scholar
  27. 27.
    Su PC, Chang YC, Wu CY (2013) Geometrically resilient digital image watermarking by using interest point extraction and extended pilot signals. IEEE Trans Inf Forensic Secur 12(8):1897–1908CrossRefGoogle Scholar
  28. 28.
    Sun D (2009) Research on density based image processing algorithms and application. Harbin: Harbin Institute of TechnologyGoogle Scholar
  29. 29.
    Tang CW, Hang HM (2003) A feature-based robust digital image watermarking scheme. IEEE trans. On. Signal Process 51(4):950–958MathSciNetGoogle Scholar
  30. 30.
    Tsai JS, Huang WB, Kuo YH (2011) On the selection of optimal feature region set for robust digital image watermarking. IEEE Trans Image Process 20(3):735–743MathSciNetCrossRefGoogle Scholar
  31. 31.
    Tsai J, Huang W, Kuo Y, Horng M (2012) Joint robustness and security enhancement for feature-based image watermarking using invariant feature regions. Signal Process 92(6):1431–1445CrossRefGoogle Scholar
  32. 32.
    Tsougenis ED, Papakostas GA, Koulouriotis DE, Karakasis EG (2014) Adaptive color image watermarking by the use of quaternion image moments. Expert Syst Appl 41(14):6408–6418CrossRefGoogle Scholar
  33. 33.
    Tuytelaars T, Mikolajczyk K (2008) Local invariant feature detectors: A survey. Found Trends Comput Graph Vis 3(3):177–280CrossRefGoogle Scholar
  34. 34.
    Valizadeh A, Wang ZJ (2011) Correlation-and-bit-aware spread spectrum embedding for data hiding. IEEE Trans Inf Forensic Secur 6(2):267–282CrossRefGoogle Scholar
  35. 35.
    Wang XY, Miao EN, Yang HY (2012a) A new SVM-based image watermarking using Gaussian-Hermite moments. Appl Soft Comput 12(2):887–903CrossRefGoogle Scholar
  36. 36.
    Wang XY, Niu PP, Yang HY, Chen LL (2012b) Affine invariant image watermarking using intensity probability density-based Harris Laplace detector. J Vis Commun Image Represent 23(6):892–907CrossRefGoogle Scholar
  37. 37.
    Wang S, Zheng D, Zhao J (2014) Adaptive watermarking and tree structure based image quality estimation. IEEE Trans on Multimedia 16(2):331–324Google Scholar
  38. 38.
    Winkler T, Rinner B (2014) Security and privacy protection in visual sensor networks: a survey. ACM Comput Surv 47(1)Google Scholar
  39. 39.
    Yang SL (2011) Research on digital image watermarking algorithms resistant to geometric attacks. Anhui: Hefei University of TechnologyGoogle Scholar
  40. 40.
    Yu Y, Huang K, Chen W, Tan T (2012) A novel algorithm for view and illumination invariant image matching. IEEE Trans Image Process 21(1):229–240MathSciNetCrossRefGoogle Scholar
  41. 41.
    Zhang ZY (2011) Digital rights management ecosystem and its usage controls: a survey. Int J Digit Content Technol Its Appl 5(3):255–272CrossRefGoogle Scholar
  42. 42.
    Zhang ZY (2012) Frontier and methodologies on digital rights management for multimedia social networks. Int J Digit Content Technol Its Appl 6(9):245–249CrossRefGoogle Scholar
  43. 43.
    Zhang H, Shu H, Coatrieux G (2011) Affine Legendre moment invariants for image watermarking robust to geometric distortions. IEEE Trans Image Process 20(8):2189–2199MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.School of Computer and Information TechnologyLiaoning Normal UniversityDalianPeople’s Republic of China

Personalised recommendations