Multimedia Tools and Applications

, Volume 76, Issue 3, pp 3343–3359 | Cite as

Blind audio watermarking algorithm based on DCT, linear regression and standard deviation

  • Mahdi Jeyhoon
  • Mohammad Asgari
  • Lili Ehsan
  • Seyedeh Zahra Jalilzadeh
Article

Abstract

This paper proposes a blind audio watermarking algorithm to embed data and extract them by changing the Discrete Cosine Transform (DCT) coefficients. The key idea is to divide the selected frequency band of DCT into short frames and change the samples of each frame based on the watermark bits that are embedded in. The proposed idea uses linear regression and standard deviation to extract watermark bits. The experimental results show that the method has a high capacity about 3000 bps data payload, without significant perceptual distortion. Moreover, this idea provides robustness against common signal processing attacks such as Additive White Gaussian Noise, Resampling, Re-quantizing and Echo.

Keywords

Audio watermarking DCT coefficients Blind Linear regression Standard deviation 

References

  1. 1.
    Al-Haj A (2014) A dual transform audio watermarking algorithm. Multimedia Tools Appl 73(3):1897–1912CrossRefGoogle Scholar
  2. 2.
    Al-Haj A (2014) An imperceptible and robust audio watermarking algorithm. EURASIP J Audio Speech, and Music Process 37(1):1–12Google Scholar
  3. 3.
    Bhat V, Sengupta I, Das A (2010) An adaptive audio watermarking based on the singular value decomposition in the wavelet domain. Digital Signal Process 20 (6):1547–1558CrossRefGoogle Scholar
  4. 4.
    Bhat V, Sengupta I, Das A (2011) An audio watermarking scheme using singular value decomposition and dither-modulation quantization. Multimedia Tools Appl 52 (2-3):369–383CrossRefGoogle Scholar
  5. 5.
    Charfeddine M, Elarbi M Amar CB (2014) A new DCT audio watermarking scheme based on preliminary MP3 study. Multimedia Tools Appl 70(3):1521–1557CrossRefGoogle Scholar
  6. 6.
    Cox IJ, Kilian J, Leighton FT, Shamoon T (1997) Secure spread spectrum watermarking for multimedia. IEEE Trans Image Process 6(12):1673–1687CrossRefGoogle Scholar
  7. 7.
    Cvejic N (2004) Spread spectrum audio watermarking using frequency hopping and attack characterizationl. Signal Process 84(1):207–213CrossRefMATHGoogle Scholar
  8. 8.
    Fallahpour M, Megas D (2009) High capacity audio watermarking using FFT amplitude interpolation. IEICE Electron Express 6(14):1057–1063CrossRefGoogle Scholar
  9. 9.
    Fallahpour M, Megas D (2011) High capacity audio watermarking using the high frequency band of the wavelet domain. Multimedia Tools Appl 52(2-3):485–498CrossRefGoogle Scholar
  10. 10.
    Freedman DA (2009) Statistical models: theory and practice. cambridge university pressGoogle Scholar
  11. 11.
    Jain P, Trivedi VK, LNCT B (2012) A Novel Technique for Data Hiding in Audio by Using DWTS. Int J Computational Eng Manag 15(4):2230–7893Google Scholar
  12. 12.
    Johnson NF, Duric Z, Jajodia S (2001) Information Hiding: Steganography and Watermarking-Attacks and Countermeasures. J. Electron Imaging 10(3):825–826CrossRefGoogle Scholar
  13. 13.
    Kang X, Yang R, Huang J (2011) Geometric invariant audio watermarking based on an LCM feature. IEEE Trans Multimedia 13(2):181–190CrossRefGoogle Scholar
  14. 14.
    Ko B-S, Nishimura R, Suzuki Y (2005) Time-spread echo method for digital audio watermarking. IEEE Trans Multimedia 7(2):212–221CrossRefGoogle Scholar
  15. 15.
    Malik H, Ansari R, Khokhar A (2008) Robust audio watermarking using frequency-selective spread spectrum. IET Inf Secur 2(4):129–150CrossRefGoogle Scholar
  16. 16.
    Neubauer C, Herre J Audio watermarking of MPEG-2 AAC bit streams. In: Audio Engineering Society Convention 108, 2000. Audio Engineering SocietyGoogle Scholar
  17. 17.
    Petitcolas FA, Andersons RJ, Kuhn MG (1999) Information hiding-a survey. Proc IEEE 87(7):1062–1078CrossRefGoogle Scholar
  18. 18.
  19. 19.
    Thiede T, Treurniet WC, Bitto R, Schmidmer C, Sporer T, Beerends JG, Colomes C (2000) PEAQ-The ITU standard for objective measurement of perceived audio quality. J Audio Eng Soc 48(1/2):3– 29Google Scholar
  20. 20.
    Trivedi NK Trivedi MC An Algorithmic Digital Audio Watermarking in Perceptual Domain Using Direct Sequence Spread Spectrum. In: 2014 Fourth International Conference on Communication Systems and Network Technologies (CSNT), 2014. IEEE, pp 805–809Google Scholar
  21. 21.
    Zhang Z (2012) Frontier and Methodologies on Digital Rights Management for Multimedia Social Networks. Int J Digit Content Technol Appl 6(9)Google Scholar
  22. 22.
    Zhang Z, Wang Z, Niu D (2015) A novel approach to rights sharing-enabling digital rights management for mobile multimedia. Multi Tools Appl 74(16):6255–6271CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Mahdi Jeyhoon
    • 1
  • Mohammad Asgari
    • 1
  • Lili Ehsan
    • 1
  • Seyedeh Zahra Jalilzadeh
    • 2
  1. 1.Broadcast Engineering Faculty of Islamic Republic of Iran Broadcasting UniversityTehranIran
  2. 2.Islamic Republic of Iran BroadcastingTehranIran

Personalised recommendations