Multimedia Tools and Applications

, Volume 76, Issue 12, pp 14405–14435 | Cite as

A two-stage traitor tracing scheme for hierarchical fingerprints

  • Faten ChaabaneEmail author
  • Maha Charfeddine
  • William Puech
  • Chokri Ben Amar


The multimedia traitor tracing field involves the embedding of a collusion secure fingerprint in the host signal to retrieve and prevent any multimedia content fraud. Trendy work aims at providing a tracing system which offers a good protection of the digital content and an efficient tracing process. These challenges depend on reducing the length of the embedded fingerprint and the complexity of the accusation process. Furthermore, addressing these issues becomes more and more relevant in media distribution applications involving an important number of users. In this paper, we propose a secure fingerprinting system based on a two-stage tracing strategy which combines two probabilistic tracing codes: Boneh Shaw with replication scheme and Tardos codes. This strategy is applied to a multilevel hierarchical fingerprint which is then embedded using a DCT-based audio watermarking technique. By taking the advantage of grouping users and applying a weight-based tracing process, the proposed fingerprinting system offers to reduce efficiently the computational costs of the tracing time. It has also a good robustness to different types of attacks. We have carried out different tests to evaluate the performance of the system in terms of robustness and imperceptibility. The experimental results show that the proposed fingerprinting system provides a suitable solution to the the infringement copyright problem in multimedia distribution platforms by reducing significantly the users’ retrieval space and performing good detection results in a reduced time.


Multimedia traitor tracing Collusion secure fingerprint Two-stage Tardos Boneh Shaw Audio watermarking 


  1. 1.
    Akashi N, Kuribayashi M, Morii M (2008) Hierarchical construction of Tardos code. In: International symposium on information theory and its applications. ISITA 2008. pp 1–6Google Scholar
  2. 2.
    Bhat K V, Sengupta I, Das A (2008) Information systems security: 4th international conference, ICISS 2008, Hyderabad, India, December 16-20, 2008. Proceedings, chap. audio watermarking based on quantization in wavelet domain. Springer, Berlin Heidelberg, pp 235–242Google Scholar
  3. 3.
    Boneh D, Shaw J (1995) Collusion-secure fingerprinting for digital data (extended abstract). In: Advances in cryptology - CRYPTO ’95, 15th annual international cryptology conference. Santa Barbara, California, USA, August 27-31, 1995, Proceedings, pp 452–465Google Scholar
  4. 4.
    Boneh D, Shaw J (1998) Collusion-secure fingerprinting for digital data. IEEE Trans Inf Theory 44(5):1897–1905MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Cha B H, Kuo C C J (2007) Design of collusion-free hiding codes using mai-free principle. In: IEEE International conference on acoustics, speech and signal processing, 2007. ICASSP 2007. vol 2, pp II–145–II–148Google Scholar
  6. 6.
    Chaabane F, Charfeddine M, Amar C B (2013) A survey on digital tracing traitors schemes. In: 9th International conference on information assurance and security, IAS 2013. Gammarth, Tunisia, December 4-6, 2013, pp 85–90Google Scholar
  7. 7.
    Chaabane F, Charfeddine M, Amar C B (2014) A multimedia tracing traitors scheme using multi-level hierarchical structure for tardos fingerprint based audio watermarking. In: SIGMAP 2014 - Proceedings of the 11th international conference on signal processing and multimedia applications. Vienna, pp 289–296Google Scholar
  8. 8.
    Chaabane F, Charfeddine M, Ben Amar C (2011) The impact of error correcting coding in audio watermarking. In: 2011 3rd International conference on next generation networks and services, 10.1109/NGNS.2011.6142556. IEEE, pp. 90–95Google Scholar
  9. 9.
    Chaabane F, Charfeddine M, Puech W, Amar C B (2015) Towards a blind map-based traitor tracing scheme for hierarchical fingerprints. In: 22nd International conference on neural information processing, ICONIP 2015. IstanbulGoogle Scholar
  10. 10.
    Chaabane F, Charfeddine M, Puech W, Amar C B (2015) A qr-code based audio watermarking technique for tracing traitors. In: 23rd European signal processing conference, EUSIPCO 2015. Nice, pp 51–55Google Scholar
  11. 11.
    Charfeddine M, Elarbi M, Amar C B (2012) A new DCT audio watermarking scheme based on preliminary MP3 study. Multimed Tools Appl 70(3):1521–1557CrossRefGoogle Scholar
  12. 12.
    Charfeddine M, Elarbi M, Koubaa M, Amar C B (2010) Dct based blind audio watermarking scheme. In: SIGMAP, pp 139–144Google Scholar
  13. 13.
    Charfeddine M, Mezghani E, Ben Amar C (2013) Modified video watermarking scheme using audio silence deletion. In: 2013 55th International symposium ELMAR. IEEE, pp 203–206Google Scholar
  14. 14.
    Choi J, Reaz A S, Mukherjee B (2012) A survey of user behavior in vod service and bandwidth-saving multicast streaming schemes. IEEE Commun Surveys Tutor 14 (1):156–169CrossRefGoogle Scholar
  15. 15.
    Craver S, Memon N, Yeo B L, Yeung M M (2006) Resolving rightful ownerships with invisible watermarking techniques: limitations, attacks, and implications. IEEE J Sel A Commun 16(4):573–586CrossRefGoogle Scholar
  16. 16.
    Cvejic N, Cvejic N, Seppanen T (2007) Digital audio watermarking techniques and technologies: applications and benchmarks. IGI Global, HersheyzbMATHGoogle Scholar
  17. 17.
    Desoubeaux M, Guelvouit G L, Puech W (2011) Probabilistic fingerprinting codes used to detect traitor zero-bit watermark. In: SPIE Proceedings, vol 7880. Media Watermarking, Security, and Forensics IIIGoogle Scholar
  18. 18.
    Desoubeaux M, Guelvouit G L, Puech W (2012) Fast detection of Tardos codes with boneh-shaw types. In: Proc. SPIE 8303. Media Watermarking, Security, and ForensicsGoogle Scholar
  19. 19.
    Development LAZ Eaqual-evaluate audio quality, version: 0.1.3alpha.
  20. 20.
    El’arbi M, Amar C, Nicolas H (2006) Video watermarking based on neural networks. In: 2006 IEEE International conference on multimedia and expo, pp 1577–1580. doi: 10.1109/ICME.2006.262846
  21. 21.
    El’arbi M, Koubaa M, Charfeddine M, Amar C B (2011) A dynamic video watermarking algorithm in fast motion areas in the wavelet domain. Multimed Tools Appl 55(3):579–600CrossRefGoogle Scholar
  22. 22.
    Fernandez M, Soriano M, Cotrina J (2007) Tracing illegal redistribution using errors-anderasures and side information decoding algorithms. Inform Secur IET 1(2):83–90CrossRefGoogle Scholar
  23. 23.
    Fontaine C (2011) How to protect multimedia pieces of content, from their creation to their distribution. Ph.D. thesis, Universit de Bretagne Occidentale, cole doctorale SICMAGoogle Scholar
  24. 24.
    Furon T, Pérez-Freire L (2009) Worst case attacks against binary probabilistic traitor tracing codes. CoRR arXiv:0903.3480
  25. 25.
    Hayashi N, Kuribayashi M, Morii M (2007) Collusion-resistant fingerprinting scheme based on the cdma-technique. In: IWSEC, pp. 28–43Google Scholar
  26. 26.
    He S, Wu M (2007) Collusion-resistant video fingerprinting for large user group. IEEE Trans Inform Forens Secur 2(4):697–709CrossRefGoogle Scholar
  27. 27.
    Hong I, Kim I, Han S S (2001) A blind watermarking technique using wavelet transform. In: IEEE International symposium on industrial electronics, 2001. Proceedings. ISIE 2001, vol 3, pp 1946– 1950Google Scholar
  28. 28.
    Keiler F (2006) Real-time subband-adpcm low-delay audio coding approach. Audio Engineering Society Convention 120.
  29. 29.
    Koubaa M, Amar C B, Nicolas H (2006) Collusion-resistant video watermarking based on video mosaicing. In; Eight IEEE international symposium on multimedia (ISM 2006). San Diego, pp 161–168Google Scholar
  30. 30.
    Koubaa M, El’arbi M, Amar C B, Nicolas H (2012) Collusion, MPEG4 compression and frame dropping resistant video watermarking. Multimed Tools Appl 56(2):281–301CrossRefGoogle Scholar
  31. 31.
    Kumar N, Manikandan T, Sapthagirivasan V (2011) Non blind image watermarking based on similarity in contourlet domain. In: 2011 International conference on recent trends in information technology (ICRTIT), pp 1277–1282Google Scholar
  32. 32.
    Kuribayashi M, Akashi N, Morii M (2008) On the systematic generation of tardos ’s fingerprinting codes. In: 2008 IEEE 10th workshop on multimedia signal processing, pp 748–753Google Scholar
  33. 33.
    Laarhoven T, de Weger B (2011) Optimal symmetric tardos traitor tracing schemes. CoRR arXiv:1107.3441
  34. 34.
    Lanxun W, Chao Y, Jiao P (2007) An audio watermark embedding algorithm based on mean-quantization in wavelet domain. In: 8th International conference on electronic measurement and instruments, 2007. ICEMI ’07, pp 2–423–2–425Google Scholar
  35. 35.
    Lie W N, Chang L C (2006) Robust and high-quality time-domain audio watermarking based on low-frequency amplitude modification. IEEE Trans Multimed 8(1):46–59CrossRefGoogle Scholar
  36. 36.
    Mathon B, Bas P, Cayre F, Macq B (2013) Impacts of watermarking security on tardos-based fingerprinting. IEEE Trans Inform Forens Secur 8(6):1038–1050CrossRefGoogle Scholar
  37. 37.
    Meerwald P, Furon T (2012) Toward practical joint decoding of binary tardos fingerprinting codes. IEEE Trans Inform Forens Secur 7(4):1168–1180CrossRefGoogle Scholar
  38. 38.
    Mezghani E, Charfeddine M, Amar C B (2013) Audio silence deletion before and after MPEG video compression. In: International conference on computer as a tool proceedings of Eurocon 2013. Zagreb, pp 1625–1629Google Scholar
  39. 39.
    Nematollahi M, Al-Haddad S, Doraisamy S, Saripan M (2012) Digital audio and speech watermarking based on the multiple discrete wavelets transform and singular value decomposition. In: 2012 Sixth Asia modelling symposium (AMS), pp 109–114Google Scholar
  40. 40.
    Neubauer C, Herre J (1998) Digital watermarking and its influence on audio quality. In: 105th AES convention. San Francisco. Preprint 4823Google Scholar
  41. 41.
    Nuida K, Fujitsu S, Hagiwara M, Kitagawa T, Watanabe H, Ogawa K, Imai H (2007) An improvement of tardos’s collusion-secure fingerprinting codes with very short lengths. In: Proceedings of the 17th International conference on applied algebra, algebraic algorithms and error-correcting codes, AAECC’07, pp 80–89Google Scholar
  42. 42.
    Peikert C, shelat A, Smith A (2003) Lower bounds for collusion-secure fingerprinting. In: Proceedings of the Fourteenth annual ACM-SIAM symposium on discrete algorithms, pp 472–479Google Scholar
  43. 43.
    Petitcolas F A, Anderson R, Kuhn M (1999) Information hiding-a survey. Proc IEEE 87(7):1062–1078CrossRefGoogle Scholar
  44. 44.
    Qureshi A, Megas D, Rif-Pous H (2015) Framework for preserving security and privacy in peer-to-peer content distribution systems. Expert Syst Appl 42(3):1391–1408CrossRefGoogle Scholar
  45. 45.
    Saha B J, Arun KKK, Pradhan C (2014) Non blind watermarking technique using enhanced one time pad in dwt domain. In: 2014 International conference on computing, communication and networking technologies (ICCCNT), pp 1–6Google Scholar
  46. 46.
    Skoric B, Katzenbeisser S, Celik M U (2007) Symmetric Tardos fingerprinting codes for arbitrary alphabet sizes. IACR Cryptology ePrint Archive 2007:41zbMATHGoogle Scholar
  47. 47.
    Tardos G (2003) Optimal probabilistic fingerprint codes. In: STOC, pp 116–125Google Scholar
  48. 48.
    Tassa T (2005) Low bandwidth dynamic traitor tracing schemes. J Cryptol 18 (2):167–183MathSciNetCrossRefzbMATHGoogle Scholar
  49. 49.
    Thiede T, Treurniet W C, Bitto R, Schmidmer C, Sporer T, Beerends J G, Colomes C (2000) Peaq - the itu standard for objective measurement of perceived audio quality. J Audio Eng Soc 48(1/2):3– 29Google Scholar
  50. 50.
    Trappe W, Wu M, Wang Z J, Liu K J R (2003) Anti-collusion fingerprinting for multimedia. IEEE Trans Signal Process 51(4):1069–1087MathSciNetCrossRefGoogle Scholar
  51. 51.
    Wagner N R (1983) Fingerprinting. In: Proceedings of the 1983 IEEE symposium on security and privacy. Washington, pp 18–Google Scholar
  52. 52.
    Wang J, Healy R, Timoney J (2011) A robust audio watermarking scheme based on reduced singular value decomposition and distortion removal. Signal Process 91(8):1693–1708CrossRefzbMATHGoogle Scholar
  53. 53.
    Wang Z J, Wu M, Trappe W, Liu K J R (2004) Group-oriented fingerprinting for multimedia forensics. EURASIP J Adv Sig Proc 2004(14):2153–2173CrossRefGoogle Scholar
  54. 54.
    Wu X W, Liew A C (2012) Near-optimal collusion-secure fingerprinting codes for efficiently tracing illegal re-distribution. In: Cyberspace safety and security. Springer, Berlin Heidelberg, vol 7672, pp 352–361Google Scholar
  55. 55.
    Xie F, Furon T, Fontaine C (2008) On-off keying modulation and tardos fingerprinting. In: MM&Sec, pp 101–106Google Scholar
  56. 56.
    Xu X, Peng H, He C (2007) Applications of fuzzy sets theory: 7th international workshop on fuzzy logic and applications, WILF 2007, Camogli, Italy, July 7-10, 2007. Proceedings, chap. DWT-Based audio watermarking using support vector regression and subsampling. Springer, Berlin Heidelberg, pp 136–144Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Faten Chaabane
    • 1
    Email author
  • Maha Charfeddine
    • 1
  • William Puech
    • 2
  • Chokri Ben Amar
    • 1
  1. 1.National Engineering School of Sfax (ENIS)University of SfaxSfaxTunisia
  2. 2.LIRMM Laboratory, UMR 5506 CNRSUniversity of Montpellier IIMontpellier Cedex 05France

Personalised recommendations