Multimedia Tools and Applications

, Volume 76, Issue 3, pp 3471–3483 | Cite as

(Two-Dimensional)2 whitening reconstruction for newborn recognition

Article
  • 110 Downloads

Abstract

Recently, various feature extraction techniques and its variations have been proposed for computer vision. However, most of these techniques are sensitive to the images acquired in uncontrolled environment. The illumination, expression and occlusion for face images result in random error entries in the 2days matrix representing the face. Techniques such as Principal Component Analysis (PCA) do not handle these entries explicitly. This paper proposes a (Two-dimensional)2 whitening reconstruction (T2WR) pre-processing step to be coupled with the PCA algorithm. This combined method would process illumination & expression variations better than standalone PCA. This technique has been compared with state-of-the-art Two-dimensional whitening reconstruction (TWR) pre-processing method. The final results clearly indicate the reason for better performance of T2WR over TWR. The histograms plotted for both these algorithms show that T2WR makes for a smoother frequency distribution than TWR. The proposed method indicated increased recognition rate and accuracy with increasing number of training images; up to 93.82 % for 2 images, 94.76 % for 4 images and 97.42 % for 6 training images.

Keywords

Face recognition Illumination Whitening Newborn Principal component analysis 

References

  1. 1.
    Adini Y, Moses Y, Ullman S (1997) Face recognition: the problem of compensating for changes in illumination direction. Pattern Anal Mach Intell IEEE Trans 19:721–732CrossRefGoogle Scholar
  2. 2.
    Ahonen T, Hadid A, Pietikainen M (2006) Face description with local binary patterns: application to face recognition. IEEE Trans Pattern Anal Mach Intell 28(12):2037–2041CrossRefMATHGoogle Scholar
  3. 3.
    Belhumeur PN, Hespanha JP, Kriegman DJ (1997) Eigenfaces vs. fisherfaces: recognition using class specific linear projection. Pattern Anal Mach Intell IEEE Trans 19:711–720CrossRefGoogle Scholar
  4. 4.
    Chen W, Er MJ, Wu S (2006) Illumination compensation and normalization for robust face recognition using discrete cosine transform in logarithm domain. Syst Man, Cybern Part B Cybern IEEE Trans 36:458–466CrossRefGoogle Scholar
  5. 5.
    Chen T, Yin W, Zhou XS et al (2006) Total variation models for variable lighting face recognition. Pattern Anal Mach Intell IEEE Trans 28:1519–1524CrossRefGoogle Scholar
  6. 6.
    Chen S, Zhang D, Zhou Z-H (2004) Enhanced (PC) 2 A for face recognition with one training image per person. Pattern Recognit Lett 25:1173–1181CrossRefGoogle Scholar
  7. 7.
    Daugman J (2007) New methods in iris recognition. IEEE Trans Syst, Man Cybernet B 37(5):1167–1175CrossRefGoogle Scholar
  8. 8.
    Fields C, Hugh CF, Warren CP, Zimberoff M (1960) The ear of the newborn as an identification constant. J Obstetr Gynecol 16:98–101Google Scholar
  9. 9.
    Fitzgibbon A, Zisserman A (2002) On affine invariant clustering and automatic cast listing in movies. Comput Vision - ECCV 2002. Springer, 304–320Google Scholar
  10. 10.
    Gottumukkal R, Asari VK (2004) An improved face recognition technique based on modular PCA approach. Pattern Recognit Lett 25:429–436CrossRefGoogle Scholar
  11. 11.
    Han H, Shan S, Chen X, Gao W (2013) A comparative study on illumination preprocessing in face recognition. Pattern Recognit 46:1691–1699CrossRefGoogle Scholar
  12. 12.
  13. 13.
  14. 14.
  15. 15.
  16. 16.
  17. 17.
    Jobson DJ, Rahman Z, Woodell GA (1997) Properties and performance of a center/surround retinex. Image Process IEEE Trans 6:451–462CrossRefGoogle Scholar
  18. 18.
    Li SZ, Jain AK (2004) Handbook of face recognition. Springer, New YorkMATHGoogle Scholar
  19. 19.
    Ojala T, Pietikainen M, Maenpaa T (2002) Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans Pattern Anal Mach Intell 24(7):971–987CrossRefMATHGoogle Scholar
  20. 20.
    Pizer SM, Amburn EP, Austin JD et al (1987) Adaptive histogram equalization and its variations. Comput Vision, Graph Imag Process 39:355–368CrossRefGoogle Scholar
  21. 21.
    Shan S, Gao W, Cao B, Zhao D (2003) Illumination normalization for robust face recognition against varying lighting conditions. Anal Model Faces Gestures, 2003. AMFG 2003. IEEE Int Work: 157–164Google Scholar
  22. 22.
    Shi X, Guo Z, Nie F, et al. (2015) Two-dimensional whitening reconstruction for enhancing robustness of principal component analysis. IEEE Trans Pattern Anal Mach Intell 1–1. doi: 10.1109/TPAMI.2015.2501810
  23. 23.
    Tan X, Triggs B (2010) Enhanced local texture feature sets for face recognition under difficult lighting conditions. Image Process IEEE Trans 19:1635–1650MathSciNetCrossRefGoogle Scholar
  24. 24.
    Tiwari S, Singh A, Singh SK (2011) Newborn’s ear recognition: Can it be done?. Int Conf Image Inform Process (ICIIP), 3-5 Nov. JUIT IndiaGoogle Scholar
  25. 25.
    Tiwari S, Kumar S, Singh SK, Singh A Newborn recognition using multimodal biometric. Encyclopedia Inform Sci Technol, Third Edition. doi: 10.4018/978-1-4666-5888-2.ch427, (pages 4347–4357)
  26. 26.
    Tiwari S, Kumar S, Kumar S, Sinha GR (2015) Ear recognition for newborns. Proc IEEE, 2nd Int Conf ―Comput Sustain Global Dev, IEEE Conf ID: 35071, ISSN: 0973-7529, ISBN: 978-93-80544-14-4, pp. 6.195–6.200Google Scholar
  27. 27.
    Tiwari S, Singh SK (2012) Face recognition for newborns. IET Biometrics 1(4):200–208CrossRefGoogle Scholar
  28. 28.
    Tiwari S, Singh SK (2012) Newborn verification using headprint. J Inform Technol Res (JITR) 5(2):15–30. doi:10.4018/jitr.2012040102.(IGIGlobal), ISSN: 1938-7857CrossRefGoogle Scholar
  29. 29.
    Tiwari S, Singh SK (2015) Does all newborn face lookalike to human and machine? Proc Natl Acad Sci, India Sect A: Phys Sci 3(4):681–683. doi:10.1007/s40010-014-0196-7, ISSN: 0369-8203Google Scholar
  30. 30.
    Tiwari S, Singh SK Multimodal biometric recognition for newborn. research developments in biometrics and video processing techniques (IGI Global Publishing). Edited by Dr. Rajeev Srivastava, Dr. S.K. Singh and Dr. K.K. Shukla. Chapter 2. ISSN: 1948-9730, ISBN: 978-1-4666-4870-8Google Scholar
  31. 31.
    Tiwari S, Singh A, Singh SK (2012) Fusion of ear and soft-biometrics for recognition of newborn. Sign Image Process: Int J 3(3):103–116, ISSN: 0976-710XGoogle Scholar
  32. 32.
    Tiwari S, Singh A, Singh SK (2012) Intelligent method for face recognition of infant. Inte J Comput Appl 52(4):36–50Google Scholar
  33. 33.
    Tiwari S, Singh A, Singh SK (2012) Integrating faces and soft-biometrics for newborn recognition. Int J Adv Comput Eng Architect 2(2):201–209Google Scholar
  34. 34.
    Tiwari S, Singh A, Singh SK (2012) Can face and soft-biometric traits assist in recognition of newborn?. Proc IEEE, Int Conf Recent Adv Inform Technol: 74–79Google Scholar
  35. 35.
    Tiwari S, Singh A, Singh SK (2012) Can ear and soft-biometric traits assist in recognition of newborn?. Proc Int Conf Comput Sci, Eng Appl. doi:10.1007/978-3-642-30157-5, ISBN: 978-3-642-30157-5, pp. 179–192, (Springer Berlin Heidelberg)
  36. 36.
    Tiwari S, Singh A, Singh SK (2013) Multimodal database of newborns for biometric recognition. Int J Bio-ScI Bio-Technol 5(2):89–99Google Scholar
  37. 37.
    Turk M, Pentland A (1991) Eigenfaces for recognition. J Cogn Neurosci 3:71–86CrossRefGoogle Scholar
  38. 38.
    Wang H, Li SZ, Wang Y (2004) Face recognition under varying lighting conditions using self quotient image. Autom Face Gesture Recognition, 2004. Proc Sixth IEEE Int Conf: 819–824Google Scholar
  39. 39.
    Wu J, Zhou Z-H (2002) Face recognition with one training image per person. Pattern Recognit Lett 23:1711–1719CrossRefMATHGoogle Scholar
  40. 40.
    Xie X, Lam K-M (2006) An efficient illumination normalization method for face recognition. Pattern Recognit Lett 27:609–617CrossRefGoogle Scholar
  41. 41.
    Yang J, Zhang D, Frangi AF, Yang J (2004) Two-dimensional PCA: a new approach to appearance-based face representation and recognition. Pattern Anal Mach Intell IEEE Trans 26:131–137CrossRefGoogle Scholar
  42. 42.
    Zhang D, Chen S, Zhou Z-H (2005) A new face recognition method based on SVD perturbation for single example image per person. Appl Math Comput 163:895–907MathSciNetCrossRefMATHGoogle Scholar
  43. 43.
    Zhang D, Zhou Z-H, Chen S (2006) Diagonal principal component analysis for face recognition. Pattern Recognit 39:140–142CrossRefGoogle Scholar
  44. 44.
    Zhao L, Yang Y-H (1999) Theoretical analysis of illumination in PCA-based vision systems. Pattern Recognit 32:547–564CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Member, Education & ResearchInfosys Ltd.ChandigarhIndia
  2. 2.Computer Science DepartmentIndian School of MinesDhanbadIndia

Personalised recommendations