Multimedia Tools and Applications

, Volume 76, Issue 4, pp 4673–4694 | Cite as

Cancelable features using log-Gabor filters for biometric authentication

Article

Abstract

Wide spread use of biometric based authentication requires security of biometric data against identity thefts. Cancelable biometrics is a recent approach to address the concerns regarding privacy of biometric data, public confidence, and acceptance of biometric systems. This work proposes a template protection approach which generates revocable binary features from phase and magnitude patterns of log-Gabor filters. Multi-level transformations are applied at signal and feature level to distort the biometric data using user specific tokenized variables which are observed to provide better performance and security against information leakage under correlation attacks. A thorough analysis is performed to study the performance, non-invertibility, and changeability of the proposed approach under stolen token scenario on multiple biometric modalities. It is revealed that generated templates are non-invertible, easy to revoke, and also deliver good performance.

Keywords

Cancelable biometrics Biometric salting Log-Gabor transform Non-invertiblity Random projection Revocability 

References

  1. 1.
    Amayeh G, Tavakkoli A, Bebis G (2009) Accurate and efficient computation of gabor features in real-time applications. In: Advances in Visual Computing, Springer, pp 243–252Google Scholar
  2. 2.
    Areekul V, Watchareeruetai U, Tantaratana S (2004) Fast separable gabor filter for fingerprint enhancement. In: Biometric Authentication. Springer, pp 403–409Google Scholar
  3. 3.
    Aykut M, Ekinci M (2015) Developing a contactless palmprint authentication system by introducing a novel roi extraction method. Image Vis Comput 40:65–74CrossRefGoogle Scholar
  4. 4.
    Beveridge R, Bolme D, Teixeira M, Draper B (2003) The csu face identification evaluation system users guide: version 5.0. Computer Science Department, Colorado State University 2 (3)Google Scholar
  5. 5.
    Bingham E, Mannila H (2001) Random projection in dimensionality reduction: applications to image and text data. In: Proceedings of the seventh ACM SIGKDD international conference on Knowledge discovery and data mining, pp 245–250Google Scholar
  6. 6.
    Bolle RM, Connell JH, Ratha NK (2002) Biometric perils and patches. Pattern Recogn 35(12):2727–2738CrossRefMATHGoogle Scholar
  7. 7.
    Boult TE, Scheirer WJ, Woodworth R (2007) Revocable Fingerprint biotokens: Accuracy and security analysis. In: Computer vision and pattern recognition, 2007. CVPR’07. IEEE Conference on, pp 1–8Google Scholar
  8. 8.
    CASIA-FaceV5 Biometrics Ideal Test. http://biometrics.idealtest.org
  9. 9.
    CASIA-MS-Palmprint V1 Biometrics Ideal Test . http://biometrics.idealtest.org
  10. 10.
    CASIA palmprint database Biometrics Ideal Test. http://biometrics.idealtest.org/downloadDB/
  11. 11.
    Chin YJ, Ong TS, Teoh ABJ, Goh K (2014) Integrated biometrics template protection technique based on fingerprint and palmprint feature-level fusion. Inf Fusion 18:161–174CrossRefGoogle Scholar
  12. 12.
    Chu R, Lei Z, Han Y, He R, Li SZ (2007) Learning gabor magnitude features for palmprint recognition. In: Computer Vision–ACCV 2007. Springer, pp 22–31Google Scholar
  13. 13.
    Connie T, Teoh A, Goh M, Ngo D (2005) Palmhashing: a novel approach for cancelable biometrics. Inf Process Lett 93(1):1–5MathSciNetCrossRefGoogle Scholar
  14. 14.
    Dasgupta S (2000) Experiments with random projection. In: Proceedings of the Sixteenth conference on Uncertainty in artificial intelligence, Morgan Kaufmann Publishers Inc., pp 143–151Google Scholar
  15. 15.
    Farooq F, Bolle RM, Jea TY, Ratha N (2007) Anonymous and revocable fingerprint recognition. In: Computer vision and pattern recognition, 2007. CVPR’07. IEEE Conference on, pp 1–7Google Scholar
  16. 16.
    Field DJ (1987) Relations between the statistics of natural images and the response properties of cortical cells. JOSA A 4(12):2379–2394CrossRefGoogle Scholar
  17. 17.
    Filipe S, Alexandre LA (2014) Algorithms for invariant long-wave infrared face segmentation: evaluation and comparison. Pattern Anal Applic 17(4):823–837MathSciNetCrossRefGoogle Scholar
  18. 18.
    Frankl P, Maehara H (1988) The johnson-lindenstrauss lemma and the sphericity of some graphs. J Comb Theory B 44(3):355–362MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Goel N, Bebis G, Nefian A (2005) Face recognition experiments with random projection. In: Defense and Security, International Society for Optics and Photonics, pp 426–437Google Scholar
  20. 20.
    Gonzalez RC, Woods RE, Eddins SL (2004) Digital image processing using MATLAB. Pearson Education IndiaGoogle Scholar
  21. 21.
    Hirata S, Takahashi K (2009) Cancelable biometrics with perfect secrecy for correlation-based matching. In: Advances in Biometrics. Springer, pp 868–878Google Scholar
  22. 22.
    Indyk P, Motwani R (1998) Approximate nearest neighbors: towards removing the curse of dimensionality. In: Proceedings of the thirtieth annual ACM symposium on Theory of computing, pp 604–613Google Scholar
  23. 23.
    IRIS thermal/visible face database University of Tennessee. http://www.cse.ohio-state.edu/otcbvs-bench/
  24. 24.
    Jin ATB, Ling DNC, Goh A (2004) Biohashing: two factor authentication featuring fingerprint data and tokenised random number. Pattern Recogn 37(11):2245–2255CrossRefGoogle Scholar
  25. 25.
    Kaski S (1998) Dimensionality reduction by random mapping: Fast similarity computation for clustering. In: Neural networks proceedings, 1998. IEEE world congress on computational intelligence. The 1998 IEEE international joint conference on, IEEE, vol 1, pp 413–418Google Scholar
  26. 26.
    Kaur H, Khanna P (2015) Biometric template protection using cancelable biometrics and visual cryptography techniques. Multimedia Tools and Applications 1–29Google Scholar
  27. 27.
    Kovesi P (1999) Image features from phase congruency. Videre: J Comput Vis Res 1(3):1–26Google Scholar
  28. 28.
    Lacharme P, Cherrier E, Rosenberger C et al (2013) Preimage attack on biohashing. In: International Conference on Security and Cryptography (SECRYPT)Google Scholar
  29. 29.
    Lee C, Kim J (2010) Cancelable fingerprint templates using minutiae-based bit-strings. J Netw Comput Appl 33(3):236–246MathSciNetCrossRefGoogle Scholar
  30. 30.
    Lee Y, Chung Y, Moon K (2009) Inverse operation and preimage attack on biohashing. In: Computational intelligence in biometrics: theory, Algorithms, and Applications, 2009. CIB 2009. IEEE Workshop on, pp 92–97Google Scholar
  31. 31.
    Leng L, Teoh ABJ (2015) Alignment-free row-co-occurrence cancelable palmprint fuzzy vault. Pattern Recogn 48(7):2290–2303CrossRefGoogle Scholar
  32. 32.
    Leng L, Zhang J (2011) Dual-key-binding cancelable palmprint cryptosystem for palmprint protection and information security. J Netw Comput Appl 34(6):1979–1989CrossRefGoogle Scholar
  33. 33.
    Leng L, Zhang J (2013) Palmhash code vs. palmphasor code. Neurocomputing 108:1–12CrossRefGoogle Scholar
  34. 34.
    Leng L, Zhang J, Khan M, Bi X, Ji M (2010) Cancelable palmcode generated from randomized gabor filters for palmprint protection. Sci Res Essays 6 (4):784–792Google Scholar
  35. 35.
    Leng L, Li M, Teoh ABJ (2013) Conjugate 2dpalmhash code for secure palm-print-vein verification. In: Image and signal processing (CISP), 2013 6th international congress on, IEEE, vol 3, pp 1705–1710Google Scholar
  36. 36.
    Leng L, Teoh ABJ, Li M, Khan MK (2014) Analysis of correlation of 2dpalmhash code and orientation range suitable for transposition. Neurocomputing 131:377–387CrossRefGoogle Scholar
  37. 37.
    Li J, Sang N, Gao C (2014) Log-gabor weber descriptor for face recognition. In: Computer vision-ACCV 2014 Workshops. Springer, pp 541–553Google Scholar
  38. 38.
    Li SZ, Yi D, Lei Z, Liao S (2013) The casia nir-vis 2.0 face database. In: Computer vision and pattern recognition workshops (CVPRW), 2013 IEEE Conference on, pp 348–353Google Scholar
  39. 39.
    Lin C, Fan KC (2001) Triangle-based approach to the detection of human face. Pattern Recogn 34(6):1271–1284CrossRefMATHGoogle Scholar
  40. 40.
    Liu K, Kargupta H, Ryan J (2006) Random projection-based multiplicative data perturbation for privacy preserving distributed data mining. IEEE Trans Knowl Data Eng 18(1):92–106CrossRefGoogle Scholar
  41. 41.
    Lu J, Plataniotis KN, Venetsanopoulos AN (2003) Face recognition using kernel direct discriminant analysis algorithms. IEEE Trans Neural Netw 14(1):117–126CrossRefGoogle Scholar
  42. 42.
    Maiorana E, Campisi P, Neri A (2011) Bioconvolving: Cancelable templates for a multi-biometrics signature recognition system. In: Systems conference (SysCon), 2011 IEEE International, pp 495–500Google Scholar
  43. 43.
    Mulyono D, Jinn HS (2008) A study of finger vein biometric for personal identification, Biometrics and Security. In: Technologies, 2008. ISBAST 2008. International Symposium on, pp 1–8Google Scholar
  44. 44.
    Ngo DC, Teoh AB, Goh A (2006) Biometric hash: high-confidence face recognition. IEEE Trans Circuits Syst Video Technol 16(6):771–775CrossRefGoogle Scholar
  45. 45.
    ORL face database AT&T Laboratories Cambridge. http://www.cl.cam.ac.uk/
  46. 46.
    PolyU palmprint database The Hong Kong Polytechnic University. http://www4.comp.polyu.edu.hk/biometrics/
  47. 47.
    Quan F, Fei S, Anni C, Feifei Z (2008) Cracking cancelable fingerprint template of ratha. In: Computer science and computational technology, 2008. ISCSCT’08. International symposium on, vol 2, pp 572–575Google Scholar
  48. 48.
    Ratha N, Connell J, Bolle RM, Chikkerur S (2006) Cancelable biometrics: a case study in fingerprints. In: Pattern recognition, 2006. ICPR 2006. 18th international conference on, vol 4, pp 370–373Google Scholar
  49. 49.
    Ratha NK, Connell JH, Bolle RM (2001) Enhancing security and privacy in biometrics-based authentication systems. IBM Syst J 40(3):614–634CrossRefGoogle Scholar
  50. 50.
    Savvides M, Kumar BV, Khosla PK (2004) Cancelable biometric filters for face recognition. In: Pattern recognition, 2004. ICPR 2004. Proceedings of the 17th international conference on, vol 3, pp 922–925Google Scholar
  51. 51.
    Soutar C, Roberge D, Stoianov A, Gilroy R, Kumar BV (1998) Biometric encryption using image processing. In: Photonics West’98 Electronic Imaging, International Society for Optics and Photonics, pp 178–188Google Scholar
  52. 52.
    Štruc V, Pavešić N (2010) The complete gabor-fisher classifier for robust face recognition. EURASIP Journal on Advances in Signal Processing 2010:31Google Scholar
  53. 53.
    Štruc V, Pavešić N (2009) Gabor-based kernel partial-least-squares discrimination features for face recognition. Informatica (Vilnius) 20(1):115–138MATHGoogle Scholar
  54. 54.
    Sutcu Y, Sencar HT, Memon N (2005) A secure biometric authentication scheme based on robust hashing. In: Proceedings of the 7th workshop on Multimedia and security, pp 111–116Google Scholar
  55. 55.
    Teoh A, Jin B, Connie T, Ngo D, Ling C (2006) Remarks on biohash and its mathematical foundation. Inf Process Lett 100(4):145–150MathSciNetCrossRefMATHGoogle Scholar
  56. 56.
    Teoh ABJ, Ngo DCL (2006) Biophasor: Token supplemented cancellable biometrics. In: Control, Automation, Robotics and Vision, 2006. ICARCV’06. 9th International Conference on, pp 1–5Google Scholar
  57. 57.
    Teoh ABJ, Yuang CT (2007) Cancelable biometrics realization with multispace random projections. IEEE Trans Syst Man Cybern B Cybern 37(5):1096–1106CrossRefGoogle Scholar
  58. 58.
    Uludag U, Pankanti S, Prabhakar S, Jain AK (2004) Biometric cryptosystems: issues and challenges. Proc IEEE 92(6):948–960CrossRefGoogle Scholar
  59. 59.
    Wang X, Shi BE (2010) Gpu implemention of fast gabor filters. In: Circuits and systems (ISCAS), proceedings of 2010 IEEE International Symposium on, pp 373–376Google Scholar
  60. 60.
    Wang Y, Plataniotis KN (2010) An analysis of random projection for changeable and privacy-preserving biometric verification. IEEE Trans Syst Man Cybern B Cybern 40(5):1280–1293CrossRefGoogle Scholar
  61. 61.
    Xie S, Shan S, Chen X, Chen J (2010) Fusing local patterns of gabor magnitude and phase for face recognition. IEEE Trans Image Process 19(5):1349–1361MathSciNetCrossRefGoogle Scholar
  62. 62.
    Yang B, Chen S (2013) A comparative study on local binary pattern (lbp) based face recognition: Lbp histogram versus lbp image. Neurocomputing 120:365–379CrossRefGoogle Scholar
  63. 63.
    Yang W, Hu J, Wang S, Yang J (2013) Cancelable fingerprint templates with delaunay triangle-based local structures. In: Cyberspace Safety and Security. Springer, pp 81–91Google Scholar
  64. 64.
    Yi J, Su F (2014) Histogram of log-gabor magnitude patterns for face recognition. In: Acoustics, speech and signal processing (ICASSP), 2014 IEEE International Conference on, pp 519–523Google Scholar
  65. 65.
    Yin Y, Liu L, Sun X (2011) Sdumla-hmt: a multimodal biometric database. In: Biometric Recognition. Springer, pp 260–268Google Scholar
  66. 66.
    Zhang B, Shan S, Chen X, Gao W (2007) Histogram of gabor phase patterns (hgpp): A novel object representation approach for face recognition. IEEE Trans Image Process 16(1):57–68MathSciNetCrossRefGoogle Scholar
  67. 67.
    Zhou Y, Kumar A (2011) Human identification using palm-vein images. IEEE Trans Inf Forensics Secur 6(4):1259–1274CrossRefGoogle Scholar
  68. 68.
    Zhou SR, Yin JP, Zhang JM (2013) Local binary pattern (lbp) and local phase quantization (lbq) based on gabor filter for face representation. Neurocomputing 116:260–264CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Computer Science and EngineeringPDPM Indian Institute of Information Technology, Design and Manufacturing, JabalpurMadhya PradeshIndia

Personalised recommendations