Multimedia Tools and Applications

, Volume 76, Issue 7, pp 9195–9218 | Cite as

High capacity data hiding based on interpolated image

  • Xianquan ZhangEmail author
  • Zerui Sun
  • Zhenjun Tang
  • Chunqiang Yu
  • Xiaoyun Wang


We investigate the use of parabolic interpolation in data hiding and propose a novel data hiding algorithm with high capacity based on interpolated image. Specifically, the proposed algorithm creates an interpolated image from input image by parabolic interpolation, and embeds secret bits into interpolated pixels in terms of the relation between the interpolated value and the mean value. Ten standard benchmark images are taken as test images for validating efficiency of our algorithm. The results illustrate that our algorithm has better performances than some popular data hiding methods in embedding capacity and visual quality with respect to PSNR and SSIM.


Interpolated image Data hiding Parabolic interpolation Embedding capacity 



This work was partially supported by the National Natural Science Foundation of China (61562007, 61363034, 61300109), the Guangxi Natural Science Foundation (2015GXNSFDA139040), the Guangxi “Bagui Scholar” Teams for Innovation and Research, the Project of the Guangxi Key Lab of Multi-source Information Mining & Security (13-A-03-01, 14-A-02-02, 15-A-02-02), the Project of the Guangxi Experiment Center of Information Science (20130204), the Guangxi Key Laboratory of Trusted Software (kx201327), the Scientific and Technological Research Projects of Guangxi Education Administration (YB2014048), the Guangxi Higher School Key Lab of Cloud Computing and Complex System (15202), and the Guangxi Collaborative Innovation Center of Multi-source Information Integration and Intelligent Processing. The authors would like to express sincere thanks for the anonymous reviewers’ insightful comments and valuable suggestions.


  1. 1.
    Alattar AM (2004) Reversible watermark using the difference expansion of a generalized integer transform. IEEE Trans Image Process 13(8):1147–1156MathSciNetCrossRefGoogle Scholar
  2. 2.
    Celik MU, Sharma G, Tekalp AM, Saber E (2005) Lossless generalized-LSB data embedding. IEEE Trans Image Process 14(2):253–266CrossRefGoogle Scholar
  3. 3.
    Chang CC, Tai WL, Chen KN (2008) Lossless data hiding based on histogram modification for image authentication. IEEE/IFIP International Conference on Embedded and Ubiquitous Computing (EUC’08), 1: 506–511Google Scholar
  4. 4.
    Fallahpour M, Sedaaghi MH (2007) High capacity lossless data hiding based on histogram modification. IEICE Electron Expr 4(7):205–210CrossRefGoogle Scholar
  5. 5.
    Fridrich J, Goljan M, Du R (2002) Lossless data embedding—new paradigm in digital watermarking. EURASIP J Adv Signal Process 2002(2):185–196CrossRefzbMATHGoogle Scholar
  6. 6.
    Fridrich J, Goljan M, Du R (2002) Lossless data embedding for all image formats. Electronic Imaging 2002. International Society for Optics and Photonics, pp 572–583Google Scholar
  7. 7.
    Hong W, Chen TS (2011) Reversible data embedding for high quality images using interpolation and reference pixel distribution mechanism. J Vis Commun Image Represent 22(2):131–140CrossRefGoogle Scholar
  8. 8.
    Hu J, Li TR (2015) Reversible steganography using extended image interpolation technique. Comput Electr Eng 46:447–455CrossRefGoogle Scholar
  9. 9.
  10. 10.
    Jung KH, Yoo KY (2009) Data hiding method using image interpolation. Computer Stand Interfaces 31(2):465–470CrossRefGoogle Scholar
  11. 11.
    Jung KH, Yoo KY (2015) Steganographic method based on interpolation and LSB substitution of digital images. Multimedia Tools Appl 74(6):2143–2155CrossRefGoogle Scholar
  12. 12.
    Lee CF, Huang YL (2012) An efficient image interpolation increasing payload in reversible data hiding. Expert Syst Appl 39(8):6712–6719CrossRefGoogle Scholar
  13. 13.
    Lee CC, Wu HC, Tsai CS, Chu YP (2008) Adaptive lossless steganographic scheme with centralized difference expansion. Pattern Recogn 41(6):2097–2106CrossRefzbMATHGoogle Scholar
  14. 14.
    Liu YC, Wu HC, Yu SS (2011) Adaptive DE-based reversible steganographic technique using bilinear interpolation and simplified location map. Multimedia Tools Appl 52(2-3):263–276CrossRefGoogle Scholar
  15. 15.
    Luo L, Chen Z, Chen M et al (2010) Reversible image watermarking using interpolation technique. IEEE Trans Inf Forensics Secur 5(1):187–193CrossRefGoogle Scholar
  16. 16.
    Ni Z, Shi YQ, Ansari N, Su W (2006) Reversible data hiding. IEEE Trans Circuits Syst Video Technol 16(3):354–362CrossRefGoogle Scholar
  17. 17.
    Sachnev V, Kim HJ, Nam J, Suresh S, Shi YQ (2009) Reversible watermarking algorithm using sorting and prediction. IEEE Trans Circuits Syst Video Technol 19(7):989–999CrossRefGoogle Scholar
  18. 18.
    Tai WL, Yeh CM, Chang CC (2009) Reversible data hiding based on histogram modification of pixel differences. IEEE Trans Circuits Syst Video Technol 19(6):906–910CrossRefGoogle Scholar
  19. 19.
    The SSIM Index for Image Quality Assessment. [Online] Available:
  20. 20.
    Tian J (2003) Reversible data embedding using a difference expansion. IEEE Trans Circuits Syst Video Technol 13(8):890–896CrossRefGoogle Scholar
  21. 21.
    Tseng HW, Chang CC (2008) An extended difference expansion algorithm for reversible watermarking. Image Vis Comput 26(8):1148–1153CrossRefGoogle Scholar
  22. 22.
    USC-SIPI Image Database. [Online] Available:
  23. 23.
    Wang Z, Bovik AC, Sheikh HR, Simoncelli EP (2004) Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process 13(4):600–612CrossRefGoogle Scholar
  24. 24.
    Wang XT, Chang CC, Nguyen TS, Li MC (2013) Reversible data hiding for high quality images exploiting interpolation and direction order mechanism. Digital Signal Process 23(2):569–577MathSciNetCrossRefGoogle Scholar
  25. 25.
    Wang WJ, Zhang YH, Huang CT, Wang SJ (2013) Steganography of data embedding in multimedia images using interpolation and histogram shiftin., 2013 Ninth International Conference on Intelligent Information Hiding and Multimedia Signal Processing, pp 387–390Google Scholar
  26. 26.
    Zhang X, Liang T, Tang Z, Dai X (2012) Restoration of embedded image from corrupted stego image. Signal Process 92(7):1691–1698CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Xianquan Zhang
    • 1
    • 2
    • 3
    • 4
    Email author
  • Zerui Sun
    • 1
    • 2
    • 4
  • Zhenjun Tang
    • 1
    • 2
  • Chunqiang Yu
    • 1
    • 3
  • Xiaoyun Wang
    • 5
  1. 1.Guangxi Key Lab of Multi-source Information Mining & SecurityGuangxi Normal UniversityGuilinChina
  2. 2.Department of Computer ScienceGuangxi Normal UniversityGuilinPeople’s Republic of China
  3. 3.Guangxi Experiment Center of Information ScienceGuilin University of Electronic TechnologyGuilinChina
  4. 4.Guangxi Key Laboratory of Trusted SoftwareGuilin University of Electronic TechnologyGuilinChina
  5. 5.College of Mathematics & Computer ScienceYangtze Normal UniversityChongqingChina

Personalised recommendations