Multimedia Tools and Applications

, Volume 76, Issue 6, pp 8745–8756 | Cite as

Digital image steganalysis based on the reciprocal singular value curve

Article

Abstract

Embedding secret messages in steganographic approaches is similar to adding some weak noises to the original media. One of the traditional ways for image steganalysis is computing a feature sets using noise residuals. From another perspective, the disturbance of natural image statistics can be explored to extract the feature vector for steganalysis. In fact, the alteration of natural scene statistics can be investigated to reveal the presence of secret messages embedded in images. Hence, the feature vectors can be constructed using such changes. In the proposed scheme, the alteration of singular value curve is used to construct the steganalysis feature vector. Two spatial and JPEG based feature vectors are extracted in the proposed statistical exploitation. The experimental results illustrate the acceptable performance of the proposed feature vectors for both universal and JPEG based steganalysis methods.

Keywords

Steganography Steganalysis SVD DCT JPEG 

References

  1. 1.
    Avciba I, Kharrazi M, Memon N, Sankur L (2005) Image steganalysis with binary similarity measures. EURASIP J Appl Sig Process 2005:2749–2757. doi:10.1155/asp.2005.2749 CrossRefMATHGoogle Scholar
  2. 2.
    Avcibas I, Memon N, Sankur B (2003) Steganalysis using image quality metrics. Image Process IEEE Trans 12(2):221–229MathSciNetCrossRefGoogle Scholar
  3. 3.
  4. 4.
    Chan CK, Cheng LM (2004) Hiding data in images by simple LSB substitution. Pattern Recogn 37(3):469–474CrossRefMATHGoogle Scholar
  5. 5.
    Chen C, Shi YQ (2008) JPEG image steganalysis utilizing both intrablock and interblock correlations. In: Circuits and Systems, 2008. ISCAS 2008. IEEE International Symposium on. IEEE, pp 3029–3032Google Scholar
  6. 6.
    Cox IJ (2008) Digital watermarking and steganography. Morgan Kaufmann PublishersGoogle Scholar
  7. 7.
    Fridrich J, Goljan M, Soukal D (2005) Perturbed quantization steganography. Multimedia Systems 11(2):98–107. doi:10.1007/s00530-005-0194-3 CrossRefGoogle Scholar
  8. 8.
    Gul G, Dirik AE, Avcibas I (2007) Steganalytic features for JPEG compression-based perturbed quantization. Sig Process Lett IEEE 14(3):205–208. doi:10.1109/LSP.2006.884010 CrossRefGoogle Scholar
  9. 9.
    Gul G, Kurugollu F (2009) A novel universal steganalyser design:“LogSv”. In: Image Processing (ICIP), 2009 16th IEEE International Conference on, IEEE, pp 4249–4252Google Scholar
  10. 10.
    Gul G, Kurugollu F (2010) SVD-based universal spatial domain image steganalysis. Inf Forensic Secur IEEE Trans 5(2):349–353. doi:10.1109/tifs.2010.2041826 CrossRefGoogle Scholar
  11. 11.
    Guo Q, Zhang C, Zhang Y, Liu H (2015) An efficient SVD-based method for image denoising. Circ Syst Video Technol IEEE Trans PP 99:1–1. doi:10.1109/TCSVT.2015.2416631 Google Scholar
  12. 12.
    Hetzl S, Mutzel P (2005) A graph–theoretic approach to steganography. In: Dittmann J, Katzenbeisser S, Uhl A (eds) Communications and multimedia security, vol 3677. Lecture notes in computer science. Springer, Berlin Heidelberg, pp 119–128. doi:10.1007/11552055_12 Google Scholar
  13. 13.
    Holub V, Fridrich J (2015) Low-complexity features for JPEG steganalysis using undecimated DCT. Inf Forensic Secur IEEE Trans 10(2):219–228. doi:10.1109/TIFS.2014.2364918 CrossRefGoogle Scholar
  14. 14.
    Hongmei G, Swaminathan A, Min W (2007) Noise features for image tampering detection and steganalysis. In: Image Processing, 2007. ICIP 2007. IEEE International Conference on, Sept. 16 2007-Oct. 19 2007. pp VI - 97–VI - 100. doi:10.1109/icip.2007.4379530
  15. 15.
    Kharrazi M, Sencar HT, Memon N (2006) Performance study of common image steganography and steganalysis techniques. ELECTIM 15 (4):041104-041104-041116. doi:10.1117/1.2400672
  16. 16.
    Liu Q, Sung AH, Qiao M (2011) Neighboring joint density-based JPEG steganalysis. ACM Trans Intell Syst Technol 2(2):1–16. doi:10.1145/1899412.1899420 CrossRefGoogle Scholar
  17. 17.
    Mahmoudi-Aznaveh A, Mansouri A, Torkamani-Azar F, Eslami M (2009) Image quality measurement besides distortion type classifying. Opt Rev 16(1):30–34CrossRefGoogle Scholar
  18. 18.
    Mansouri A, Mahmoudi-Aznaveh A, Torkamani-Azar F, Jahanshahi J (2009) Image quality assessment using the singular value decomposition theorem. Opt Rev 16(2):49–53CrossRefGoogle Scholar
  19. 19.
    Narwaria M, Weisi L (2012) SVD-based quality metric for image and video using machine learning. Syst, Man, Cybern, Part B: Cybern, IEEE Trans 42(2):347–364. doi:10.1109/TSMCB.2011.2163391 CrossRefGoogle Scholar
  20. 20.
    Nouri R, Mansouri A (2015) Blind image steganalysis based on reciprocal singular value curve. In: Machine Vision and Image Processing (MVIP), 2015 9th Iranian Conference on, 18-19 Nov. 2015. pp 124–127. doi:10.1109/IranianMVIP.2015.7397519
  21. 21.
    Pevny T, Bas P, Fridrich J (2010) Steganalysis by subtractive pixel adjacency matrix. Inf Forensic Secur IEEE Trans 5(2):215–224. doi:10.1109/TIFS.2010.2045842 CrossRefGoogle Scholar
  22. 22.
    Pevný T, Filler T, Bas P (2010) Using high-dimensional image models to perform highly undetectable steganography. In: Böhme R, Fong PL, Safavi-Naini R (eds) Information hiding, vol 6387. Lecture notes in computer science. Springer, Berlin Heidelberg, pp 161–177. doi:10.1007/978-3-642-16435-4_13 Google Scholar
  23. 23.
    Provos N, Honeyman P (2003) Hide and seek: an introduction to steganography. Secur Priv IEEE 1(3):32–44. doi:10.1109/MSECP.2003.1203220 CrossRefGoogle Scholar
  24. 24.
    Qingxiao G, Jing D, Tieniu T (2011) An effective image steganalysis method based on neighborhood information of pixels. In: Image Processing (ICIP), 2011 18th IEEE International Conference on, 11–14 Sept:2721–2724. doi:10.1109/ICIP.2011.6116231
  25. 25.
    Saad MA, Bovik AC, Charrier C (2010) A DCT statistics-based blind image quality index. Sig Process Lett IEEE 17(6):583–586CrossRefGoogle Scholar
  26. 26.
    Saad MA, Bovik AC, Charrier C (2012) Blind image quality assessment: a natural scene statistics approach in the DCT domain. Image Process IEEE Trans 21(8):3339–3352MathSciNetCrossRefGoogle Scholar
  27. 27.
    Sang Q, Wu X, Li C, Bovik AC (2014) Blind image quality assessment using a reciprocal singular value curve. Signal Process Image Commun 29(10):1149–1157. doi:10.1016/j.image.2014.09.005 CrossRefGoogle Scholar
  28. 28.
  29. 29.
  30. 30.
  31. 31.
    Westfeld A (2001) F5—a steganographic algorithm: high capacity despite better steganalysis. 4th International Workshop on Information Hiding, Springer-Verlag, pp 289–302Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Kharazmi UniversityTehranIran

Personalised recommendations