Multimedia Tools and Applications

, Volume 76, Issue 6, pp 8627–8650 | Cite as

Toward optimal embedding capacity for transform domain steganography: a quad-tree adaptive-region approach

Article

Abstract

Embedding capacities of steganographic information security systems have remained relatively low due to the adverse effect on perceptibility, where researchers had to trade-off between higher capacities and reduced perceptual quality or choose higher perceptual quality albeit at the expense of lower capacities. This paper proposes a novel approach for color image steganography, in the discrete cosine transform (DCT) domain, that promotes optimal embedding capacity while improving stego image quality. The proposed approach is based on the observation that the space reserved for embedding the secret data varies with the statistical characteristics of the cover image and exploits a quad-tree adaptive-region embedding scheme to individuate “good” cover image segments, in relation to the correlation of pixels, for embedding the secret information. We will demonstrate that our scheme exhibits enhanced hiding capacity and perceptibility in comparison to techniques adopting fixed-block-size adaptive-regions in the DCT domain.

Keywords

Quad tree Adaptive region Statistical stationarity Fixed-block Data hiding Color steganography Discrete cosine transform 

References

  1. 1.
    Ahmed N, Natarajan T, Rao K (1974) Discrete cosine transform. IEEE Trans Comput 23(1):90–93MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Anderson RJ, Petitcolas FA (1998) On the limits of steganography. IEEE Journal on Selected Areas in Communications 16(4):474–481CrossRefGoogle Scholar
  3. 3.
    Bracamonte J, Ansorge M, Pellandini F, Farine PA (2000) Low complexity image matching in the compressed domain by using the dct-phase. In: Proceedings of the 6th COST, vol 276, pp 88–93Google Scholar
  4. 4.
    Bracamonte J, Ansorge M, Pellandini F, Farine PA (2005) Efficient compressed domain target image search and retrieval. In: Image and video retrieval, pp 154–163. SpringerGoogle Scholar
  5. 5.
    Brisbane G, Aini RSN, Ogunbona P (2005) High-capacity steganography using a shared colour palette. IEE Proc Vis Image Signal Process 152(6):787–792CrossRefGoogle Scholar
  6. 6.
    Castleman K (1996) Digital image processing. Prentice hall, upper saddleGoogle Scholar
  7. 7.
    Celik MU, Sharma G, Tekalp AM, Saber E (2005) Lossless generalized-lsb data embedding. IEEE Trans Image Processing 14(2):253–266CrossRefGoogle Scholar
  8. 8.
    Chang CC, Chen TS, Chung LZ (2002) A steganographic method based upon jpeg and quantization table modification. Inf Sci 141:123–138CrossRefMATHGoogle Scholar
  9. 9.
    Chang CC, Chen TS, Chung LZ (2002) A steganographic method based upon jpeg and quantization table modification. Inf Sci 141(1):123–138CrossRefMATHGoogle Scholar
  10. 10.
    Chang CC, Chen YH, Lin CC (2008) A data embedding scheme for color images based on genetic algorithm and absolute moment block truncation coding. Soft Comput 13:21–331Google Scholar
  11. 11.
    Chang CC, Hsiao JY, Chan CS (2003) Finding optimal least-significant-bit substitution in image hiding by dynamic programming strategy. Pattern Recogn 36 (7):1595–1683CrossRefGoogle Scholar
  12. 12.
    Chang CC, Lin CC, Tseng CS, Tai WL (2007) Reversible hiding in dct-based compressed images. Inf Sci 177:2768–2786CrossRefGoogle Scholar
  13. 13.
    Chang CC, Tai WL, Lin CC (2006) A reversible data hiding scheme based on side match vector quantization. IEEE Trans Circuits and Systems for Video Technology 16(10):1301–1308CrossRefGoogle Scholar
  14. 14.
    Chen B, Wornell G (2001) Quantization index modulation: a class of provably good methods for digital watermarking and information embedding. IEEE Trans Inf Theory 47(4):1423–1443MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Chen WY, Chen CH (2003) Public-key image steganography using discrete cosine transform and quadtree partition vector quantization coding. Opt Eng 42(10):2886–2892CrossRefGoogle Scholar
  16. 16.
    Chung KL, Shen CH, Chang LC (2001) A novel svd- and vq-based image hiding scheme. Pattern Recogn Lett 22(9):1051–1058CrossRefMATHGoogle Scholar
  17. 17.
    Cole E (2003) Hiding in Plain Sight: Steganography and the Art of Covert Communication, 1st edn. Wiley, New YorkGoogle Scholar
  18. 18.
    Curran K, Bailey K (2003) An evaluation of image based steganography methods. International Journal of Digital Evidence 2(2):1–40Google Scholar
  19. 19.
    Ebrahimpour-Komleh H, Chandran V, Sridharan S (2001) Face recognition using fractal codes. In: Proceedings of the 2001 international conference on Image processing, 2001, vol 3, pp 58–61. IEEEGoogle Scholar
  20. 20.
    Iwata M, Miyake K, Shiozaki A (2004) Digital steganography utilizing features of jpeg images. IEICE Trans Fundam E87-A(4):929–936Google Scholar
  21. 21.
    Lee Y, Chen L (2000) High capacity image steganographic model. IEE Proc Vis Image Signal Process 147(3):288–294CrossRefGoogle Scholar
  22. 22.
    Lin CC, Shiu PF (2009) Dct-based reversible data hiding scheme. In: Proceedings of the 3rd international conference on ubiquitous information management and communication (ICUIMC09), pp 327–335Google Scholar
  23. 23.
    Lin CC, Shiu PF (2010) High capacity data hiding scheme for dct-based images. Journal of Information Hiding and Multimedia Signal Processing 1(3):220–240Google Scholar
  24. 24.
    Lin CY, Chang CC, Wang YZ (2008) Reversible steganographic method with high payload for jpeg images. IEICE Trans. Inf Syst 91-D(3):836–845Google Scholar
  25. 25.
    Mozaffari S, Faez K, Ziaratban M (2005) Character representation and recognition using quad tree-based fractal encoding scheme. In: Proceedings of the 8th international conference on Document analysis and recognition, 2005, pp 819–823. IEEEGoogle Scholar
  26. 26.
    Pavlidis G, Tsompanopoulos A, Papamarkos N, Chamzas C (2003) Jpeg2000 over noisy communication channels thorough evaluation and cost analysis. Signal Process Image Commun 18(6):497–514CrossRefGoogle Scholar
  27. 27.
    Qin C, Chang CC, Chiu YP (2014) A novel joint data-hiding and compression scheme based on SMVQ and image inpainting. IEEE Trans Image Process 23(3):969–978MathSciNetCrossRefGoogle Scholar
  28. 28.
    Qin C, Chang CC, Hsu TJ (2015) Reversible data hiding scheme based on exploiting modification direction with two steganographic images. Multimedia Tools and Applications 74(15):5861–5872CrossRefGoogle Scholar
  29. 29.
    Qin C, Chang CC, Huang YH, Liao LT (2013) An inpainting-assisted reversible steganographic scheme using a histogram shifting mechanism. IEEE Transactions on Circuits and Systems for Video Technology 23(7):1109–1118CrossRefGoogle Scholar
  30. 30.
    Qin C, Zhang X (2015) Effective reversible data hiding in encrypted image with privacy protection for image content. J Vis Commun Image Represent 31:154–164CrossRefGoogle Scholar
  31. 31.
    Rabie T (2005) Robust estimation approach for blind denoising. IEEE Trans Image Processing 14(11):1755–1765CrossRefGoogle Scholar
  32. 32.
    Rabie T (2007) Frequency-domain data hiding based on the matryoshka principle. Special Issue on Advances in Video Processing and Security Analysis for Multimedia Communications. International Journal of Advanced Media and Communication 1 (3):298–312CrossRefGoogle Scholar
  33. 33.
    Rabie T (2012) Digital image steganography: an fft approach. In: 4Th international conference on networked digital technologies (NDT), pp 217–230. SpringerGoogle Scholar
  34. 34.
    Rabie T (2013) High-capacity steganography. In: 6Th international congress on image and signal processing (CISP), vol 2, pp 858–863Google Scholar
  35. 35.
    Rabie T, Kamel I (2015) On the embedding limits of the discrete cosine transform. Multimedia Tools and Applications 74(8). doi:10.1007/s11042-015-2557-x
  36. 36.
    Rabie T, Kamel I (2016) High-capacity steganography: A global-adaptive-region discrete cosine transform approach. Multimedia Tools and Applications 75(2). doi:10.1007/s11042-016-3301-x
  37. 37.
    Rao K, Yip P (1990) Discrete cosine transform: Algorithms, Advantages, Applications. Academic Press, Boston. ISBN 0-12-580203-XCrossRefMATHGoogle Scholar
  38. 38.
    Tian J (2003) Reversible data embedding using a difference expansion. IEEE Trans Circuits and Systems for Video Technology 13(8):890–896CrossRefGoogle Scholar
  39. 39.
    Tsai P, Hu YC, Chang CC (2002) An image hiding technique using block truncation coding. In: Proceedings of pacific rim workshop on digital steganography, pp 54–64Google Scholar
  40. 40.
    Wang X, Yao Z, Li CT (2005) A palette-based image steganographic method using colour quantisation. In: Proceedings of the IEEE international conference on image processing (ICIP), pp II – 1090–3Google Scholar
  41. 41.
    Wang Z, Bovik AC (2009) Mean squared error: love it or leave it? a new look at signal fidelity measures. IEEE Signal Proc Mag 26(1):98–117CrossRefGoogle Scholar
  42. 42.
    Wang Z, Bovik AC, Sheikh HR, Simoncelli EP (2004) Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process 13(4):600–612CrossRefGoogle Scholar
  43. 43.
    Yang B, Schmucker M, Funk W, Busch C, Sun S (2004) Integer dct-based reversible watermarking for images using companding technique. Proc SPIE 5306, Security, Steganography and Watermarking of Multimedia Contents 6(405)Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Electrical and Computer EngineeringUniversity of SharjahSharjahUnited Arab Emirates

Personalised recommendations