Advertisement

Multimedia Tools and Applications

, Volume 75, Issue 15, pp 9225–9239 | Cite as

A collaborative recommender system enhanced with particle swarm optimization technique

  • Rahul Katarya
  • Om Prakash Verma
Article

Abstract

In a web environment, one of the most evolving application is those with recommendation system (RS). It is a subset of information filtering systems wherein, information about certain products or services or a person are categorized and are recommended for the concerned individual. Most of the authors designed collaborative movie recommendation system by using K-NN and K-means but due to a huge increase in movies and users quantity, the neighbour selection is getting more problematic. We propose a hybrid model based on movie recommender system which utilizes type division method and classified the types of the movie according to users which results reduce computation complexity. K-Means provides initial parameters to particle swarm optimization (PSO) so as to improve its performance. PSO provides initial seed and optimizes fuzzy c-means (FCM), for soft clustering of data items (users), instead of strict clustering behaviour in K-Means. For proposed model, we first adopted type division method to reduce the dense multidimensional data space. We looked up for techniques, which could give better results than K-Means and found FCM as the solution. Genetic algorithm (GA) has the limitation of unguided mutation. Hence, we used PSO. In this article experiment performed on Movielens dataset illustrated that the proposed model may deliver high performance related to veracity, and deliver more predictable and personalized recommendations. When compared to already existing methods and having 0.78 mean absolute error (MAE), our result is 3.503 % better with 0.75 as the MAE, showed that our approach gives improved results.

Keywords

Recommender system Computational intelligence Fuzzy C-means Collaborative filtering Movie 

References

  1. 1.
    Adomavicius G, Tuzhilin A (2005) Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions. IEEE Trans Knowl Data Eng 17:734–749. doi: 10.1109/TKDE.2005.99 CrossRefGoogle Scholar
  2. 2.
    Ahmad A, Dey L (2007) A k-mean clustering algorithm for mixed numeric and categorical data. Data Knowl Eng 63:503–527. doi: 10.1016/j.datak.2007.03.016 CrossRefGoogle Scholar
  3. 3.
    Bezdek JC, Ehrlich R, Full W (1984) FCM: the fuzzy c-means clustering algorithm. Comput Geosci 10:191–203. doi: 10.1016/0098-3004(84)90020-7 CrossRefGoogle Scholar
  4. 4.
    Bobadilla J, Ortega F, Hernando A, Gutiérrez A (2013) Recommender systems survey. Knowl Based Syst 46:109–132. doi: 10.1016/j.knosys.2013.03.012 CrossRefGoogle Scholar
  5. 5.
    Cannon RL, Dave JV, Bezdek JC (1986) Efficient implementation of the fuzzy c-means clustering algorithms. IEEE Trans Pattern Anal Mach Intell 8:248–255CrossRefzbMATHGoogle Scholar
  6. 6.
    Chen C, Ye F (2004) Particle swarm optimization algorithm and its application to clustering analysis. IEEE Netw Sens Control 2:789–794Google Scholar
  7. 7.
    Chen D, Zhao C (2009) Particle swarm optimization with adaptive population size and its application. Appl Soft Comput 9:39–48. doi: 10.1016/j.asoc.2008.03.001 CrossRefGoogle Scholar
  8. 8.
    Cui X, Potok TE (2005) Document clustering analysis based on hybrid PSO+K-means algorithm. Engineering 185–191Google Scholar
  9. 9.
    Ding C, He X (2004) K -means clustering via principal component analysis. Twentyfirst Int Conf Mach Learn ICML 04 Cl:29. doi:  10.1145/1015330.1015408
  10. 10.
    Eccv A (2014) Recognizing daily activities from first-person videos with multi-task clustering. Accv2014. doi:  10.1007/978-3-319-16817-3_34
  11. 11.
    Ekstrand MD (2010) Collaborative filtering recommender systems. Found Trends® Hum Comput Inter 4:81–173. doi: 10.1561/1100000009 CrossRefGoogle Scholar
  12. 12.
    Fourie PC (2002) The particle swarm optimization algorithm in size and shape optimization. Struct Multidiscip Optim 23:259–267. doi: 10.1007/s00158-002-0188-0 CrossRefGoogle Scholar
  13. 13.
    Garden M, Dudek G (2006) Mixed collaborative and content-based filtering with user-contributed semantic features. Proc Natl Conf Artif Intell 21:1307Google Scholar
  14. 14.
    Ghosh S, Dubey S (2013) Comparative analysis of K-means and fuzzy c-means algorithms. IJACSA 4:35–39. doi: 10.14569/IJACSA.2013.040406 Google Scholar
  15. 15.
    Hartigan JA, Wong MA (1979) A K-means clustering algorithm. J R Stat Soc 28:100–108zbMATHGoogle Scholar
  16. 16.
    Hassan R, Cohanim B (2005) A comparison of particle swarm optimization and the genetic algorithm. 1st AIAA Multidiscip Des Optim Spec Conf 1–13. doi:  10.2514/6.2005-1897
  17. 17.
    Herlocker J, Konstan J (1999) An algorithmic framework for performing collaborative filtering. Proc 22nd … 8. doi:  10.1145/312624.312682
  18. 18.
    Jafar OAM, Sivakumar R (2013) A comparative study of hard and fuzzy data clustering algorithms with cluster validity indices. Int Conf Emerg Res Comput Inf Commun ApplGoogle Scholar
  19. 19.
    Jones MT (2013) Recommender systems, part 2 : introducing open source engines explore software for building a recommendation capability. 1–13Google Scholar
  20. 20.
    Kannan R, Ghinea G, Swaminathan S (2015) What do you wish to see? A summarization system for movies based on user preferences. Inf Process Manag 51:286–305. doi: 10.1016/j.ipm.2014.12.001 CrossRefGoogle Scholar
  21. 21.
    Kanungo T, Mount DM, Netanyahu NS et al (2002) An efficient k-means clustering algorithm: analysis and implementation. IEEE Trans Pattern Anal Mach Intell 24:881–892. doi: 10.1109/TPAMI.2002.1017616 CrossRefGoogle Scholar
  22. 22.
    Kennedy J, Eberhart R (1995) Particle swarm optimization. IEEE International Conference on Neural Networks, Proceedings 4:1942–1948. doi: 10.1109/ICNN.1995.488968 CrossRefGoogle Scholar
  23. 23.
    Konstan JA, Riedl J (2012) Recommender systems: from algorithms to user experience. User Model User Adapt Inter 22:101–123. doi: 10.1007/s11257-011-9112-x CrossRefGoogle Scholar
  24. 24.
    Krishna K, Murty MN (1999) Genetic K-means algorithm. 29:433–439Google Scholar
  25. 25.
    Lekakos G, Caravelas P (2008) A hybrid approach for movie recommendation. Multimed Tools Appl 36:55–70. doi: 10.1007/s11042-006-0082-7 CrossRefGoogle Scholar
  26. 26.
    Lü L, Medo M, Yeung CH et al (2012) Recommender systems. 97Google Scholar
  27. 27.
    Man KF, Tang KS, Kwong S (1996) Genetic algorithms: concepts and applications. IEEE Trans Ind Electron 43:519–534. doi: 10.1109/41.538609 CrossRefGoogle Scholar
  28. 28.
    Melville P, Sindhwani V (2010) Recommender systems. Encycl Mach Learn 829–837. doi:  10.1162/153244302760200641
  29. 29.
    Mukherjee R, Sajja N, Sen S (2003) A movie recommendation system—an application of voting theory in user modeling. User Model User Adap Inter 13:5–33. doi: 10.1023/A:1024022819690 CrossRefGoogle Scholar
  30. 30.
    Nazeer K (2009) Improving the accuracy and efficiency of the K-means clustering algorithm. Proc World Congr I:1–5Google Scholar
  31. 31.
    Pal R Nikhil BCJ (1995) On cluster validity for the fuzzy c-means model.pdf. 370–379Google Scholar
  32. 32.
    Pal NR, Pal K, Keller JM, Bezdek JC (2005) A possibilistic fuzzy c-means clustering algorithm. IEEE Trans Fuzzy Syst 13:517–530. doi: 10.1109/TFUZZ.2004.840099 MathSciNetCrossRefGoogle Scholar
  33. 33.
    Park DH, Kim HK, Choi IY, Kim JK (2012) A literature review and classification of recommender systems research. Expert Syst Appl 39:10059–10072CrossRefGoogle Scholar
  34. 34.
    Parsopoulos KE, Vrahatis MN (2008) Multi-objective particles swarm optimization approaches. IGI Glob 20–42. doi:  10.4018/978-1-59904-498-9.ch002
  35. 35.
    Pera MS, Ng Y-K (2013) A group recommender for movies based on content similarity and popularity. Inf Process Manag 49:673–687. doi: 10.1016/j.ipm.2012.07.007 CrossRefGoogle Scholar
  36. 36.
    Pham DT, Dimov SS, Nguyen CD (2005) Selection of K in K-means clustering. Proc Inst Mech Eng Part C J Mech Eng Sci 219:103–119. doi: 10.1243/095440605X8298 CrossRefGoogle Scholar
  37. 37.
    Poli R (2008) Analysis of the publications on the applications of particle swarm optimisation. J Artif Evol Appl 2008:1–10. doi: 10.1155/2008/685175 Google Scholar
  38. 38.
    Poli R, Kennedy J, Blackwell T (2007) Particle swarm optimization. Swarm Intell 1:33–57. doi: 10.1007/s11721-007-0002-0 CrossRefGoogle Scholar
  39. 39.
    Rendle S, Gantner Z, Freudenthaler C, Schmidt-Thieme L (2011) Fast context-aware recommendations with factorization machines. Proc 34th Int ACM SIGIR Conf Res Dev Inf 635–644. doi:  10.1145/2009916.2010002
  40. 40.
    Rosli AN, You T, Ha I et al (2014) Alleviating the cold-start problem by incorporating movies facebook pages. Clust Comput 18:187–197. doi: 10.1007/s10586-014-0355-2 CrossRefGoogle Scholar
  41. 41.
    Shani G, Gunawardana A (2011) Evaluating recommendation systems. Recomm Syst Handb 257–297Google Scholar
  42. 42.
    Shi Y, Eberhart R (1999) Empirical study of particle swarm optimization. Proc Congr Evol Comput 1945–1950. doi:  10.1109/CEC.1999.785511
  43. 43.
    Van Der Merwe DW, Engelbrecht AP (2003) Data clustering using particle swarm optimization. Congr Evol Comput. doi: 10.1109/CEC.2003.1299577 Google Scholar
  44. 44.
    Wagstaff K, Cardie C, Rogers S, Schroedl S (2001) Constrained K-means clustering with background knowledge. Int Conf Mach Learn 577–584. doi:  10.1109/TPAMI.2002.1017616
  45. 45.
    Wang L-C, Meng X-W, Zhang Y-J (2012) Context-aware recommender systems. J Softw 23:1–20. doi: 10.3724/SP.J.1001.2012.04100 CrossRefGoogle Scholar
  46. 46.
    Wang Z, Yu X, Feng N, Wang Z (2014) An improved collaborative movie recommendation system using computational intelligence. J Vis Lang Comput 25:667–675. doi: 10.1016/j.jvlc.2014.09.011 CrossRefGoogle Scholar
  47. 47.
    Yan Y, Member S, Ricci E (2007) A multi-task learning framework for head pose estimation under target motion. 6:1–15. doi:  10.1109/TPAMI.2015.2477843
  48. 48.
    Yan Y, Ricci E, Liu G et al (2015) Egocentric daily activity recognition via multitask clustering. Image Process IEEE Trans 24:2984–2995. doi: 10.1109/TIP.2015.2438540 MathSciNetCrossRefGoogle Scholar
  49. 49.
    Yan Y, Ricci E, Subramanian R et al (2013) No matter where you are: flexible graph-guided multi-task learning for multi-view head pose classification under target motion. Proc IEEE Int Conf Comput Vis 1177–1184. doi:  10.1109/ICCV.2013.150
  50. 50.
    Yan Y, Yang Y, Meng D et al (2015) Event oriented dictionary learning for complex event detection. 24:1867–1878Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Computer Science & EngineeringDelhi Technological UniversityDelhiIndia

Personalised recommendations