Multimedia Tools and Applications

, Volume 76, Issue 6, pp 8423–8448 | Cite as

Research on watermarking payload under the condition of keeping JPEG image transparency

  • Jia-Fa MaoEmail author
  • Wei-Guo Sheng
  • Ya-Hong Hu
  • Gang Xiao
  • Zhi-Guo Qu
  • Xin-Xin Niu
  • Li-Nan Zhu


This work focuses on the problem of maximum watermarking payload under the condition of keeping image transparency. The maximum watermarking payload of JPEG images is influenced by internal factors such as the size, complexity and visual sensitivity of images, as well as external factors including embedding operators, carrier frequency bands and embedding intensity, etc. Through the construction of payload mathematical model, theoretic analysis and experimental derivation we propose an estimation method of maximum watermarking payload based on the DCT coefficients. The feasibility and efficiency of the proposed method has been demonstrated in our experiments by adopting two embedding operators and three carrier frequency bands. Our results show, in comparison with previously related work, the proposed method can be more practical.


Transparency Watermarking payload Image complexity Visual sensitivity Embedding intensity 



This work is supported by the National Natural Science Foundation of China (No. 61573316, 61373131, 61272310, 61170271) and the ZheJiang province Natural Science Foundation of China (No. LY15F020032, LQ15E050006), PAPD, and CICAEET.


  1. 1.
    Ali M, Ahn Chang W, Siarry P (2014) Differential evolution algorithm for the selection of optimal scaling factors in image watermarking. Eng Appl Artif Intell 31:15–26CrossRefGoogle Scholar
  2. 2.
    Al-Otum HM (2014) Semi-fragile watermarking for grayscale image authentication and tamper detection based on an adjusted expanded-bit multiscale quantization-based technique. J Vis Commun Image Represent 25(5):1064–1081CrossRefGoogle Scholar
  3. 3.
    Briassouli A, Tsakalides P, Stouraitis A (2005) Hidden messages in heavy-tails: DCT-domain watermark detection using alpha-stable models. IEEE Trans Multimedia 7(4):700–715CrossRefGoogle Scholar
  4. 4.
    Cohen A, Lapidoth A (2002) The Gaussian watermarking game. IEEE Trans Inf Theory 48(6):1639–1667MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Delaigle JF, Devleeschouwer C, Macq B, et al (2002) Human visual system features enabling watermarking. In Proceedings of 2002 I.E. International Conference on Multimedia & Expo. Lausanne, Switzerland, p 489-492Google Scholar
  6. 6.
    Georg EC, Johannes A, Gregor SM (2013) Calculation of grey level co-occurrence matrix-based seismic attributes in three dimensions. Comput Geosci 60:176–183CrossRefGoogle Scholar
  7. 7.
    Gonzalez RC, Woods RE (2002) Digital image processing. Person Education, Inc. Publish as Prentice HallGoogle Scholar
  8. 8.
    Guitart O, Kim HC, Delp EJ (2006) The Watermark Evaluation Testbed (WET): new functionalities. In: PW Wong, EJ Delp (eds) Proceedings of the SPIE International Conference on Security and Watermarking of Multimedia ContentsGoogle Scholar
  9. 9.
    Han Q, Zhang R, Cham W-K et al (2014) Quadtree-based non-local Kuan’s filtering in video compression. J Vis Commun Image Represent 25(5):1044–1055CrossRefGoogle Scholar
  10. 10.
    Hedieh S, Mansour J (2009) Secure steganography based on embedding capacity. Int J Inf Secur 8(6):433–445CrossRefGoogle Scholar
  11. 11.
    Hu H-T, Chou H-H, Yu C (2014) Incorporation of perceptually adaptive QIM with singular value decomposition for blind audio watermarking. EURASIP J Adv Signal Process 2014:12. doi: 10.1186/1687-6180-2014-12 CrossRefGoogle Scholar
  12. 12.
    Hu H-T, Hsu L-Y, Chou H-H (2014) Variable-dimensional vector modulation for perceptual-based DWT blind audio watermarking with adjustable payload capacity. Digital Signal Process 31:115–123CrossRefGoogle Scholar
  13. 13.
    Jamzad M, Yaghmaee F (2006) Achieving higher stability in watermarking according to image complexity. Scientia Iranica 13(4):404–412Google Scholar
  14. 14.
    Jian L, Xiaolong L, Bin Y, Xingming S (2015) Segmentation-based image copy-move forgery detection scheme. IEEE Trans Inf Forensics Secur 10(3):507–518CrossRefGoogle Scholar
  15. 15.
    Ker AD (2007) A capacity result for batch steganography. IEEE Signal Process Let 14(8):525–528CrossRefGoogle Scholar
  16. 16.
    Khan A, Siddiqa A, Munib S, Malik SA (2014) A recent survey of reversible watermarking techniques. Inf Sci 279(2014):251–272CrossRefGoogle Scholar
  17. 17.
    Kim HC, Lin ET, Guitart O, Delp EJ (2005) Further progress in watermark evaluation testbed (WET). In: PW Wong, EJ Delp (eds) Proceedings of the SPIE International Conference on Security and Watermarking of Multimedia ContentsGoogle Scholar
  18. 18.
    Lie WN, Lin GS (2005) A feature-based classification technique for bling images steganalysis. IEEE Trans Multimedia 7(6):1007–1020CrossRefGoogle Scholar
  19. 19.
    Liu K-C (2014) Self-embedding watermarking scheme for colour images by bi-level moment-preserving technique. IET Image Process 8(6):363–372CrossRefGoogle Scholar
  20. 20.
    Liu Q, Sung A, Qiao M, Chen Z, Ribeiro B (2010) An improved approach to steganalysis of JPEG images. Inf Sci 180(9):1643–1655CrossRefGoogle Scholar
  21. 21.
    Ll S, Zhang XP, Wang SZ (2007) Digital image steganography based on tolerable error range. J Image Graph 12(2):212–217Google Scholar
  22. 22.
    Mao J-F, Zhang R, Niu X-X, Yang Y-X, Zhou L-N (2011) Research of spatial domain image digital watermarking payload. EURASIP J Inf Secur 2011:12. doi: 10.1155/2011/502748 Google Scholar
  23. 23.
    Moulin P, Koetter R (2005) Data-hiding codes. Proc IEEE 93(12):2083–2127CrossRefGoogle Scholar
  24. 24.
    Moulin P, O’Sullivan JA (2003) Information-theoretic analysis of information hiding. IEEE Trans Inf Theory 49(3):564–593MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    NRCS Phto Gallery [Online],,” Available:
  26. 26.
    Piper A, Reihaneh S-N (2013) Scalable fragile watermarking for image authentication. IET Inf Secur 7(4):300–311CrossRefGoogle Scholar
  27. 27.
    Question ITU-R 211/11 (2002) Methodology for the subjective assessment of the quality of television picture. Recommendation ITU-R BT,500-11 p 31-33Google Scholar
  28. 28.
    Singh C, Ranade Sukhjeet K (2014) Image adaptive and high-capacity watermarking system using accurate Zernike moments. IET Image Process 8(7):373–382CrossRefGoogle Scholar
  29. 29.
    Somekh-Baruch A, Merhav N (2004) On the capacity game of public watermarking system. IEEE Trans Inf Theory 50(3):511–524MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Urvoy M, Goudia D, Autrusseau F (2014) Perceptual DFT watermarking with improved detection and robustness to geometrical distortions. IEEE Trans Inf Forensics Secur 9(7):1108–1119CrossRefGoogle Scholar
  31. 31.
    Wang XY, Yang HY, Zheng HL, Wu JF (2010) A color block-histogram image retrieval based on visual weight. Acta Automat Sin 36(10):1489–1492MathSciNetCrossRefGoogle Scholar
  32. 32.
    Xiao Wei L, Seok Tae K (2014) An improved cellular automata-based digital image watermarking scheme combining the use of pixel-wise masking and 3D integral imaging. Opt Commun 319:45–55, May, 2014 CrossRefGoogle Scholar
  33. 33.
    Y Zhang, X Luo, C Yang, D Ye, F Liu (2015) JPEG-compression resistant adaptive steganography based on relative relationship between DCT coefficients. The 10th International Conference on Availability, Reliability and Security (ARES), Toulouse, France, p 461–466Google Scholar
  34. 34.
    Zhao G, Shen F, Wang Z et al (2013) Cauchy diversity measures: a novel methodology for enhancing sparsity in compressed sensing. IET Signal Process 7(9):791–799CrossRefGoogle Scholar
  35. 35.
    Zhihua X, Xinhui W, Xingming S, Quansheng L, Naixue X (2014) Steganalysis of LSB matching using differences between nonadjacent pixels. Multimedia Tools Appl. doi: 10.1007/s11042-014-2381-8 Google Scholar
  36. 36.
    Zhihua X, Xinhui W, Xingming S, Baowei W (2014) Steganalysis of least significant bit matching using multi-order differences. Secur Commun Netw 7(8):1283–1291CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Jia-Fa Mao
    • 1
    Email author
  • Wei-Guo Sheng
    • 1
  • Ya-Hong Hu
    • 1
  • Gang Xiao
    • 1
  • Zhi-Guo Qu
    • 2
    • 3
  • Xin-Xin Niu
    • 4
  • Li-Nan Zhu
    • 1
  1. 1.College of Computer Science and TechnologyZheJiang University of TechnologyHang ZhouChina
  2. 2.Jiangsu Engineering Center of Network MonitoringNanjing University of Information Science &TechnologyNanjingChina
  3. 3.School of Computer and SoftwareNanjing University of Information Science & TechnologyNanjingChina
  4. 4.Information Security CenterBeijing University of Posts and TelecommunicationsBeiJingChina

Personalised recommendations