Multimedia Tools and Applications

, Volume 76, Issue 6, pp 8497–8516 | Cite as

Difference-expansion based reversible and visible image watermarking scheme



A reversible image watermarking scheme recovers the original cover image after extracting the embedded watermarks. A visible image watermarking scheme embeds watermarks to create a visible watermark effect on the cover image. A general reversible image watermarking scheme embeds invisible watermarks. This paper presents a reversible and visible image watermarking scheme that uses a conventional difference-expansion method. The cover image is first segmented to non-overlapped k×k blocks. Each block is then applied to two watermarking schemes; a difference-expansion based invisible watermarking scheme and a visible watermarking scheme to embed one watermark bit. Exceeding numbers, larger than 255 or smaller than 0, generated from the difference-expansion method require being recorded for a lossless recovery. Experimental results show that the proposed scheme embeds visible watermarks with few recorded exceeding numbers. However, not recording any exceeding numbers still results in a high similarity of extracted watermark image and good quality of recovered cover image.


Reversible watermark Visible watermark Difference expansion Partition strategy 


  1. 1.
    Alattar AM (2004) Reversible watermark using the difference expansion of a generalized integer transform. IEEE Trans Image Process 13:1147–1156MathSciNetCrossRefGoogle Scholar
  2. 2.
    Al-Qershi OM, Khoo BE (2011) High capacity data hiding schemes for medical images based on difference expansion. J Syst Softw 84:105–112CrossRefGoogle Scholar
  3. 3.
    Al-Qershi OM, Khoo BE (2013) Two-dimensional difference expansion (2D-DE) scheme with a characteristics-based threshold. Signal Process 93:154–162CrossRefGoogle Scholar
  4. 4.
    Dragoi IC, Coltuc D (2014) Local-prediction-based difference expansion reversible watermarking. IEEE Trans Image Process 23:1779–1790MathSciNetCrossRefGoogle Scholar
  5. 5.
    Hu Y, Jeon B (2006) Reversible visible watermarking and lossless recovery of original mages. IEEE Trans Circuits Syst Video Technol 16:1423–1429CrossRefGoogle Scholar
  6. 6.
    Hu YJ, Lee HK, Chen KY, Li JW (2008) Difference expansion based reversible data hiding using two embedding directions. IEEE Trans Multimedia 10:1500–1512CrossRefGoogle Scholar
  7. 7.
    Hu Y, Lee HK, Li J (2009) DE-based reversible data hiding with improved overflow location map. IEEE Trans Circuits Syst Video Techn 19:250–260CrossRefGoogle Scholar
  8. 8.
    Jawad K, Khan A (2013) Genetic algorithm and difference expansion based reversible watermarking for relational databases. J Syst Softw 86:2742–2753CrossRefGoogle Scholar
  9. 9.
    Kim HJ, Sachnev V, Shi YQ, Nam J, Choo HG (2008) A novel difference expansion transform for reversible data embedding. IEEE Trans Inf Forensic Secur 3:456–465CrossRefGoogle Scholar
  10. 10.
    Lee CF, Chen HL, Tso HK (2010) Embedding capacity raising in reversible data hiding based on prediction of difference expansion. J Syst Softw 83:1864–1872CrossRefGoogle Scholar
  11. 11.
    Li X, Li B, Yang B, Zeng T (2014) General framework to histogram-shifting-based reversible data hiding. IEEE Trans Image Process 22:2181–2191MathSciNetCrossRefGoogle Scholar
  12. 12.
    Lin PY, Chen YH, Chang CC, Lee JS (2013) Contrast-adaptive removable visible watermarking (CARVW) mechanism. Image Vis Comput 31:311–321CrossRefGoogle Scholar
  13. 13.
    Liu M, Seah HS, Zhu C, Lin W, Tian F (2012) Reducing location map in prediction-based difference expansion for reversible image data embedding. Signal Process 92:819–828CrossRefGoogle Scholar
  14. 14.
    Liu TY, Tsai WH (2010) Generic lossless visible watermarking—a new approach. IEEE Trans Image Process 19:1224–1235MathSciNetCrossRefGoogle Scholar
  15. 15.
    Lu TC, Chang CC (2008) Lossless nibbled data embedding scheme based on difference expansion. Image Vis Comput 26:632–638CrossRefGoogle Scholar
  16. 16.
    Lu TC, Chang CC, Huang YH (2014) High Capacity reversible hiding scheme based on interpolation, difference expansion, and histogram shifting. Multimedia Tools Appl 72:417–435CrossRefGoogle Scholar
  17. 17.
    Ni Z, Shi YQ, Ansari N, Su W (2006) Reversible data hiding. IEEE Trans Circuits Syst Video Technol 16:354–362CrossRefGoogle Scholar
  18. 18.
    Ou B, Li X, Zhao Y, Ni R, Shi Y (2013) Pairwise prediction-error expansion for efficient reversible data hiding. IEEE Trans Image Process 22:5010–5021MathSciNetCrossRefGoogle Scholar
  19. 19.
    Ou B, Li X, Zhao Y, Ni R (2012) Reversible data hiding based on PDE predictor. J Syst Softw 86:2700–2709CrossRefGoogle Scholar
  20. 20.
    Tian J (2003) Reversible data embedding using a difference expansion. IEEE Trans Circuits Syst Video Technol 13:890–896CrossRefGoogle Scholar
  21. 21.
    Tsai HM, Chang LW (2010) Secure reversible visible image watermarking with authentication. Signal Process Image Commun 15:10–17CrossRefGoogle Scholar
  22. 22.
    Wu HC, Lee CC, Tsai CS, Chu YP, Chen HR (2009) A high capacity reversible data hiding scheme with edge prediction and difference expansion. J Syst Softw 82:1966–1973CrossRefGoogle Scholar
  23. 23.
    Yang Y, Sun XM, Yang HF, Li CT, Xiao R (2009) A contrast-sensitive reversible visible image watermarking technique. IEEE Trans Circuits Syst Video Technol 19:656–667CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Chien-Chang Chen
    • 1
  • Yao-Hong Tsai
    • 2
  • Hsin-Cheng Yeh
    • 1
  1. 1.Department of Computer Science and Information EngineeringTamkang UniversityTaipeiTaiwan
  2. 2.Department of Information ManagementHsuan Chuang UniversityHsinchuTaiwan

Personalised recommendations