Multimedia Tools and Applications

, Volume 76, Issue 3, pp 4491–4503 | Cite as

Gender classification using 3D statistical models

  • Wankou Yang
  • Changyin Sun
  • Wenming Zheng
  • Karl Ricanek
Article

Abstract

In this paper, an effective gender classification based on 3D face model is proposed based on 3D principal components analysis (3D Eigenmodels) and 3D independent components analysis (3D ICmodels). In our work, the 3D face model is represented by 3D landmarks. The proposed gender classification method consists of three steps: 1) Align the 3D models to get 3D aligned shapes; 2) Perform 3D PCA/ICA transformation on the aligned 3D shapes; 3) Do gender classification on the 3D Eigenmodels/ICmodels features using SVM. The experimental results on BU_3DFE database demonstrate that the proposed method can achieve good performance.

Keywords

Procrustes transformation Point alignment 3D gender classification 

References

  1. 1.
    Albert AM, Ricanek K, Patterson E (2007) A review of the literature on the aging adult skull and face: Implications for forensic science research and applications. Forensic Sci Int 172:1–9CrossRefGoogle Scholar
  2. 2.
    Ballihi L, Ben Amor B, Daoudi M, Srivastava A, Aboutajdine D (2012) Geometric based 3D facial gender classification. 5th International Symposium on Communications Control and Signal Processing (ISCCSP), pp. 1–5Google Scholar
  3. 3.
    Baluja S, Rowley H (2007) Boosting sex identification performance. Int J Comput Vis (IJCV) 71(1):111–119CrossRefGoogle Scholar
  4. 4.
    Bartlett MS, Movellan JR, Sejnowski TJ (2002) Face recognition by independent component analysis. IEEE Trans Neural Netw (NN) 13(6):1450–1462CrossRefGoogle Scholar
  5. 5.
    Bekios-Calfa J, Buenaposada JM, Baumela L (2011) Revisiting linear discriminant techniques in gender recognition. IEEE Trans Pattern Anal Mach Intell (PAMI) 33(4):858–864CrossRefGoogle Scholar
  6. 6.
    Besl PJ, McKay ND (1992) A method for registration of 3D shapes. Pattern Anal Mach Intell 14(2):239–256CrossRefGoogle Scholar
  7. 7.
    Brucelf V et al (1993) Sex discrimination: how do we tell the difference between male and female face? Perception 22:131–152CrossRefGoogle Scholar
  8. 8.
    Cao Y, Zhang B, Liu J, Ma J (2013) Weighted Margin Sparse Embedded classifier for brake cylinder detection. Neurocomputing 120:560–568CrossRefGoogle Scholar
  9. 9.
    Chang CC, Lin CJ (2001) LIBSVM: a library for support vector machines. Software available at http://www.csie.ntu.edu.tw/cjlin/libsvm
  10. 10.
    Chen C, Chang Y, Ricanek K, Wang Y (2010) Face age estimation using model selection. CVPRWGoogle Scholar
  11. 11.
    Cootes TF, Edwards GJ, Taylor CJ (1998) Active appearance models. In ICCV 2:484–498Google Scholar
  12. 12.
    Cottrell GW, Metcalfe J (1991) EMPATH: face, emotion, and gender recognition using holons. In Advances in neural information processing systems, pp. 564–571Google Scholar
  13. 13.
    Duda RO, Hart PE, Stork DG (2000) Pattern classification (2nd Edition). A Wiley-Interscience PublicationGoogle Scholar
  14. 14.
    Ezghari S, Belghini N, Zahi A, Zarghili A (2015) A gender classification approach based on 3D depth-radial curves and fuzzy similarity based classification. ISCVGoogle Scholar
  15. 15.
    Gao W, Ai H (2009) Face gender classification on consumer images in a multiethnic environment. Lect Notes Comput Sci 5558:169–178CrossRefGoogle Scholar
  16. 16.
    Golomb BA, Lawrence DT, Sejnowski TJ (1991) SEXNET: a neural network identifies sex from human faces. In Advances in neural information processing systems, pp. 572–577Google Scholar
  17. 17.
    Goodall C (1997) Procrustes regristration with difference decomposition. In CVPRGoogle Scholar
  18. 18.
    Guo GD, Dyer C, Fu Y, Huang TS (2009) Is gender recognition influenced by age? IEEE International Workshop on Human-Computer Interaction (HCI’09). In conjunction with ICCV’09Google Scholar
  19. 19.
    Gutta S, Wechsler H (1999) Gender and ethnic classifications of human faces using hybrid classifiers. In IJCNN 4084–4089Google Scholar
  20. 20.
    Han X, Ugail H, Palmer I (2009) Gender classification based on 3D face geometry features using SVM. International Conference on CyberWorldsGoogle Scholar
  21. 21.
    Hu Y, Yan J, Shi P (2010) A fusion based method for 3D facial gender classification. In ICCAE 5:369–372Google Scholar
  22. 22.
    Hyvärinen A, Karhunen J, Oja E (2001) Independent component analysis. Wiley, New YorkCrossRefGoogle Scholar
  23. 23.
    Jalil SZA, Taib MN, Idris HA, Yunus MM (2011) Gender classification based on human radiation wave analysis. UkSim 13th International Conference on Computer Modelling and Simulation (UKSim), pp. 59–63Google Scholar
  24. 24.
    Khan SA, Nazir M, Akram S, Riaz N (2011) Gender classification using image processing techniques: A survey. IEEE 14th International Multitopic Conference (INMIC), pp: 25–30Google Scholar
  25. 25.
    Kim J, Choi JM, Yi J, Turk M (2004) Effective representation using ICA for face recognition robust to local distortion and partial occlusion. IEEE Trans Pattern Anal Mach Intell (PAMI) 26(1):131–137CrossRefGoogle Scholar
  26. 26.
    Lu X et al (2006) Multimodal facial gender and ethnicity identification. Lect Notes Comput Sci 3832:554CrossRefGoogle Scholar
  27. 27.
    Makinen E, Raisamo R (2008) Evaluation of gender classification methods with automatically detected and aligned face. IEEE Trans Pattern Anal Mach Intell 30(3):541–547CrossRefGoogle Scholar
  28. 28.
    Mozaffari S, Behravan H, Akbari R (2010) Gender classification using single frontal image per person: combination of appearance and geometric based features. 20th International Conference on Pattern Recognition (ICPR), pp. 1192–1195Google Scholar
  29. 29.
    O’Toole AJ et al (1995) The perception of face gender, the role of shape and texture information in sex classification. Technical Report, No.23Google Scholar
  30. 30.
    Otoole A et al (1997) Sex classification is better with three dimensional head structure than with image intensity information. Perception-London 26:75–84CrossRefGoogle Scholar
  31. 31.
    Ricanek K, Wang Y, Chen C, Simmons SJ (2009) Generalized multi-ethnic face age-estimation. In BTASGoogle Scholar
  32. 32.
    Vapnik VN (200) The nature of statistical learning theory. SpringGoogle Scholar
  33. 33.
    Wang Y, Ricanek K, Chen C, Chang Y (2010) Gender classification from infants to seniors, in BTASGoogle Scholar
  34. 34.
    Wang Y, Ricanek K, Chen C, Chang Y (2010) Gender classification from infants to seniors. In BTASGoogle Scholar
  35. 35.
    Wild HA, Barrett SE, Spence MJ et al (2000) Recognition and sex categorization of adults’ and children’s face: examining performance in the absence of sexstereotyped cues. J Off Exp Child Psychol 77:269–291CrossRefGoogle Scholar
  36. 36.
    Wu J et al (2007) Gender classification using shape from shading. BMVC: 499–508Google Scholar
  37. 37.
    Yang Z, Li M, Ai H (2006) An experimental study on automatic face gender classification. In ICPR: 1099–1102Google Scholar
  38. 38.
    Yang MH, Moghaddam B (2000) Gender classification using support vector machines. ICIP 2:471–474Google Scholar
  39. 39.
    Yang J, Zhang D, Yang J (2007) Constructing PCA baseline algorithms to reevaluate ICA-based face-recognition performance. IEEE Trans Syst Man Cybern B 37(4):1015–1021CrossRefGoogle Scholar
  40. 40.
    Yin L, Wei X, Sun Y, Wang J, Rosato MJ (2006) A 3D facial expression database for facial behavior research. In FGR 10–12: P:211–216Google Scholar
  41. 41.
    Zhang B, Li Z, Liu J. A compressed sensing ensemble classifier with application to human detection. Neurocomputing 170: 221–227Google Scholar
  42. 42.
    Zhao H, Yang Y, Xu Z (2012) 3D facial gender classification based on multi-angle LBP feature. Acta Automat Sin 38(9):1544–1549CrossRefGoogle Scholar
  43. 43.
    Zhu J, Liao S, Yi D, Lei Z, Li SZ (2015) Multi-label CNN based pedestrian attribute learning for soft biometrics. ICB: 535–540Google Scholar
  44. 44.
    Zhang B, Perina A, Li Z, Murino V, Liu J, Ji R (2016) Bounding Multiple Gaussians Uncertainty with Application to Object Tracking, IJCV 2016, online. Int J Comput Vis doi:10.1007/s11263-016-0880-y
  45. 45.
    Zhang B, Li Z, Perina A, Bue AD, Murino V (2016) Adaptive Local Movement Modelling (ALMM) for Object Tracking, IEEE TCSVT doi:10.1109/TCSVT.2016.2540978

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Wankou Yang
    • 1
    • 2
    • 3
  • Changyin Sun
    • 1
    • 2
  • Wenming Zheng
    • 3
  • Karl Ricanek
    • 4
  1. 1.School of AutomationSoutheast UniversityNanjingChina
  2. 2.Key Lab of Measurement and Control of Complex Systems of Engineering, Ministry of EducationSoutheast UniversityNanjingChina
  3. 3.Key Laboratory of Child Development and Learning Science of Ministry of EducationSoutheast UniversityNanjingChina
  4. 4.Face Aging Group, Department of Computer ScienceUNC WilmingtonWilmingtonUSA

Personalised recommendations