Multimedia Tools and Applications

, Volume 76, Issue 6, pp 7785–7801 | Cite as

Adaptive robust video broadcast via satellite

  • Muhammad Altaf
  • Farman Ali Khan
  • Nadia Qadri
  • Mohammed Ghanbari
  • Sandra E. Dudley
Article
  • 157 Downloads

Abstract

With increasing demand for multimedia content over channels with limited bandwidth and heavy packet losses, higher coding efficiency and stronger error resiliency is required more than ever before. Both the coding efficiency and error resiliency are two opposing processes that require appropriate balancing. On the source encoding side the video encoder H.264/AVC can provide higher compression with strong error resiliency, while on the channel error correction coding side the raptor code has proven its effectiveness, with only modest overhead required for the recovery of lost data. This paper compares the efficiency and overhead of both the raptor codes and the error resiliency techniques of video standards so that both can be balanced for better compression and quality. The result is also improved by confining the robust stream to the period of poor channel conditions by adaptively switching between the video streams using switching frames introduced in H.264/AVC. In this case the video stream is initially transmitted without error resiliency assuming the channel to be completely error free, and then the robustness is increased based on the channel conditions and/or user demand. The results showed that although switching can increase the peak signal to noise ratio in the presence of losses but at the same time its excessive repetition can be irritating to the viewers. Therefore to evaluate the perceptual quality of the video streams and to find the optimum number of switching during a session, these streams were scored by different viewers for quality of enhancement. The results of the proposed scheme show an increase of 3 to 4 dB in peak signal to noise ratio with acceptable quality of enhancement.

Keywords

Digital video broadcast Error resiliency H.264/AVC Raptor codes 

References

  1. 1.
    3GPP TS 26.346 V7.4.0. (2007) Technical specification group services and system aspects; multimedia broadcast/multicast service; protocols and codecsGoogle Scholar
  2. 2.
    Ahmad S, Hamzaoui R, Al-Akaidi MM (2011) Unequal error protection using fountain codes with applications to video communication. IEEE Trans Multimedia 13(1):92–120CrossRefGoogle Scholar
  3. 3.
    Alphand O, Berthou P, Gayraud T, Combes S (2005) QoS architecture over DVB-RCS satellite networks in a NGN framework. Proceedings of IEEE globcom 2005Google Scholar
  4. 4.
    Altaf M, Fleury M, Ghanbari M (2011) Resilient video stream switching for mobile wireless channels. J Mob Multimedia (JMM) 7(3):216–235Google Scholar
  5. 5.
    Bernardini R, Durigon M, Rinaldo RR, Vitali A (2005) Comparison between multiple description and single description video coding with forward error correc-tion. In: Proc. of 7th IEEE Workshop on Multimedia Signal Processing 1–4Google Scholar
  6. 6.
    Byers JW, Luby M, Mitzenmacher M (2002) A digital fountain approach to asynchronous reliable multicast. IEEE J Sel Areas Commun 20(8):1528–1540CrossRefGoogle Scholar
  7. 7.
    Cataldi P, Shatarski MP, Grangetto M, Magli E (2006) Implementation and performance evaluation of LT and Raptor codes for multimedia applications. International Conference on Intelligent Information Hiding and Multimedia Signal Processing 263–266Google Scholar
  8. 8.
    Chatziparaskevas P, Koltsidas G, Pavlidou F-N (2011) On the fairness of return channel capacity allocation in DVB-RCS-based satellite networks. Int J Satell Commun Netw 29:163–184CrossRefGoogle Scholar
  9. 9.
    Choi BS, Suh DY (2009) Peer-to-peer scalable video streaming using Raptor code. In: Proc. of 1st IEEE International Conference on Ubiquitous and Future Networks 137–141Google Scholar
  10. 10.
    Donner A, Bovelli S, Shabdanov S (2002) Reliable multicast based on DVB-RCS. 20th AIAA international communication satellite systems conference and exhibitGoogle Scholar
  11. 11.
    ETSI EN 302 304 (2004) Digital Video Broadcasting (DVB): Transmission System for Handheld Terminals (DVB-H) European Telecom-munication Standard, (2004) http://www.dvb-h-online.org/technology
  12. 12.
    Gardikis G, Zotos N, Kourtis A (2009) Satellite media broadcast with adaptive coding and modulation. Int J Digit Multimed Broadcast 1–10Google Scholar
  13. 13.
    Ghanbari M (2003) Standard Codecs: image compression to advanced video coding. Stevenage IET Press, UKCrossRefGoogle Scholar
  14. 14.
    Gotta A, Barsocchi P (2008) Experimental video broadcasting in DVB-RCS/S2 with land mobile satellite channel: a reliability issue. IEEE Int Workshop Satell Space Commun 234–238Google Scholar
  15. 15.
    Hellge C, Gomez-Barquero D, Schierl T, Wie-gand T (2011) Layer-aware forward error correction for mobile broadcast of layered media. IEEE Trans Multimedia 13(3):551–562CrossRefGoogle Scholar
  16. 16.
  17. 17.
    Karczewicz RK (2003) The SP- and SI-frames design for H.264/AVC. IEEE Trans Circuits Syst Video Technol 13(7):637–644CrossRefGoogle Scholar
  18. 18.
    Kumar S, Xu L, Mandal MK, Panchanathan S (2003) Error resiliency schemes in H.264/AVC standard. Elsevier J Vis Commun Image Representation (Special issue on Emerging H.264/AVC Video Coding Standard) 17(2):1–26Google Scholar
  19. 19.
    Kushwaha H, Xing Y, Chandramouli R, Heffes H (2008) Reliable multimedia Transmission over cognitive radio networks using fountain codes. Proc IEEE 96(1):155–165CrossRefGoogle Scholar
  20. 20.
    Luby M (2002) LT codes. In: Proc. of the 43rd Annual IEEE Symposium on Foundations of Computer Science 271–280Google Scholar
  21. 21.
    Luby M, Gasiba T, Stockhammer T, Watson M (2007) Reliable multimedia download delivery in cellular broadcast networks. IEEE Trans Broadcast 53(1):235–246CrossRefGoogle Scholar
  22. 22.
    Neale J, Green R, Landovskis J (2004) Interactive channel for multimedia satellite networks. IEEE Commun Mag 39(3):192–198CrossRefGoogle Scholar
  23. 23.
    Osterman J, Bormans J, List P, Marpe D, Narroschke M, Pereira F, Stockhammer T, Wiegand T (2004) Video coding with H.264/AVC: tools, performance and complexity. IEEE Circuits Syst Mag 7–28Google Scholar
  24. 24.
    Pandya AU, Trapasiya SD, Chinnam SS (2013) Performance analysis of AL-FEC raptor code over 3GPP EMBS networks. Int J Renew Energy Technol 2(4):601–608Google Scholar
  25. 25.
    Qualcomm Raptor Technology - Forward Error CorrectionGoogle Scholar
  26. 26.
    Schierl T, Ganger K, Hellge C (2006) Svc-based multisource streaming for robust video transmission in mobile ad hoc networks. IEEE Wirel Commun 13(5):96–103CrossRefGoogle Scholar
  27. 27.
    Shokrollahi A (2004) Raptor codes. In: Proc. IEEE International Symposium on Information TheoryGoogle Scholar
  28. 28.
    Shokrollahi A (2006) Raptor codes. IEEE Trans Inf Theory 52(6):2551–2567MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Skinnemoen H, Leirvik R, Hetland J, Fanebust H, Paxal V (2004) Interactive IP-network via satellite DVB-RCS. IEEE J Sel Areas Commun 22(3):508–517CrossRefGoogle Scholar
  30. 30.
    Skinnemoen H, Rigal C, Yun A, Erup L, Alagha N, Ginesi A (2013) DVB-RCS2 overview. Int J SatellGoogle Scholar
  31. 31.
    Soldani C, Leduc G, Verdicchio F, Munteanu A (2006) Multiple description coding versus transport layer FEC for resilient video transmission. In: Proc. of International Conference on Digital TelecommunicationsGoogle Scholar
  32. 32.
    Son N, Jeong S (2008) An effective error concealment for H.264/AVC. IEEE 8th International Conference on Computer and Information Technology Workshops 385–390Google Scholar
  33. 33.
    Stockhammer T, Hannuksela MM, Wiegand T (2003) H.264/AVC in wireless environments. IEEE Trans Circuits Syst Video Technol 13(7):657–673CrossRefGoogle Scholar
  34. 34.
    Stockhammer T, Zia W (2007) Error-resilient coding and decoding strategies for video communication. In: Chou PA, van der Schaar M (eds) Multimedia in IP and wireless networks. Academic, Burlington, pp 13–58CrossRefGoogle Scholar
  35. 35.
  36. 36.
    Thomos N, Pulikkoonattu R, Frossard P. Intermediate performance analysis of growth codes arXiv:1211.4014 [cs.IT]Google Scholar
  37. 37.
    Vars V, Hannuksela MN (2001) Non-normative error concealment algorithms. ITU-T SGI6 Doc., VCEG-N62Google Scholar
  38. 38.
    Wenger S (2003) H.264/AVC over IP. IEEE Trans Circuits Syst Video Technol 13(7):645–656CrossRefGoogle Scholar
  39. 39.
    Why digital fountain raptor code is better than reed-solomon erasure codes for streaming applications, white paper, copy right (c) 2005, digital foundation, IncGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.COMSATS Institute of Information TechnologyWahPakistan
  2. 2.COMSATS Institute of Information TechnologyAttockPakistan
  3. 3.University of TehranTehranIran
  4. 4.London South Bank UniversityLondonUK

Personalised recommendations