Multimedia Tools and Applications

, Volume 76, Issue 5, pp 7381–7399 | Cite as

A new approach to perceptual assessment of human-computer interfaces

  • Alessandro Rizzi
  • Daniela Fogli
  • Barbara Rita Barricelli


This paper proposes a new approach and a tool to assess user interfaces by applying the ACE (Automatic Color Equalization) algorithm for computing the alternative distribution of color and contrast for the interface under design. The way humans perceive digital images or interfaces is influenced by their chromatic and spatial composition. The output of the ACE tool suggests changes in the visual composition of the interface that the designer can decide to consider or not in its final version. This semi-automatic approach to visual assessment, where the designer expertise may supervise the results and the following design decisions, allows to add a low-level perceptual testing point of view during the design phase, nowadays not always considered. The paper presents the results of a user test that involved 50 participants and regarded the evaluation of 16 different interfaces (and their alternatives). Results report the effectiveness of this innovative interfaces visual assessment approach and tool.


Human vision system Visual interface assessment Color correction Image perception 


  1. 1.
    Albers J (2013) Interaction of color - 50th anniversary edition. Yale University PressGoogle Scholar
  2. 2.
    Artusi A, Gatta C, Marini D, Purgathofer W, Rizzi A (2006) Speedup technique for a local automatic colour equalization model. Comput Graph Forum 25 (1):5–14CrossRefGoogle Scholar
  3. 3.
    Banic N, Loncaric S (2013) Light random sprays retinex: exploiting the noisy illumination estimation. Signal Process Lett IEEE 20(12):1240–1243. doi:10.1109/LSP.2013.2285960 CrossRefGoogle Scholar
  4. 4.
    Barnard P, May J, Duke D, Duce D (2000) Systems, interactions, and macrotheory. ACM Trans ComputHum Interact 7(2):222–262CrossRefGoogle Scholar
  5. 5.
    Bertalmo M, Cowan J D (2009) Implementing the retinex algorithm with wilsoncowan equations. J Physiol-Paris 103(1):69–72CrossRefGoogle Scholar
  6. 6.
    Bertalmo M, Caselles V, Provenzi E (2009) Issues about retinex theory and contrast enhancement. Int J Comput Vis 83(1):101–119CrossRefGoogle Scholar
  7. 7.
    Bottoni P, Costabile M F, Levialdi S, Mussio P (1997) Defining visual languages for interactive computing. IEEE Trans Syst Man Cybern Part A 27(6):773–783CrossRefGoogle Scholar
  8. 8.
    Bottoni P, Costabile M F, Mussio P (1999) Specification and dialogue control of visual interaction through visual rewriting systems. ACM Trans Program Lang Syst 21(6):1077–1136CrossRefGoogle Scholar
  9. 9.
    Chambah M, Rizzi A, Saint Jean C (2007) Image quality and automatic color equalization. In: Electronic imaging, image quality and system performance. SPIE, San JoseGoogle Scholar
  10. 10.
    Fairchild MD, Johnson GM (2004) icam framework for image appearance, differences, and quality. J Electron Imag 13(1):126–138CrossRefGoogle Scholar
  11. 11.
    Fierro M, Ha H G, Ha YH (2009) An automatic color correction method inspired by the retinex and opponent colors theories. In: Optomechatronic technologies. ISOT. International Symposium on, pp 316–321. doi:10.1109/ISOT.2009.5326047
  12. 12.
    Fogli D, Provenza L P, Bernareggi C (2014) A universal design resource for rich internet applications based on design patterns. In: Universal access in the information society, vol 13, pp 205– 226Google Scholar
  13. 13.
    Gatta C, Rizzi A, Marini D (2006) Local linear lut method for spatial colour-correction algorithm speed-up. Vis Image Signal Process IEE Proc 153(3):357–363CrossRefGoogle Scholar
  14. 14.
    Gatta C, Rizzi A, Marini D (2007) Perceptually inspired hdr images tone mapping with color correction. Int J Imag Syst Technol 17(5):285–294CrossRefGoogle Scholar
  15. 15.
    Gianini G, Manenti A, Rizzi A (2014) Qbrix: a quantile-based approach to retinex. J Opt Soc Amer A 31(12):2663–2673CrossRefGoogle Scholar
  16. 16.
    Gianini G, Rizzi A, Damiani E (2015) A retinex model based on absorbing markov chains. Submitted to Information SciencesGoogle Scholar
  17. 17.
    Hartmann J, Sutcliffe A, Angeli A D (2008) Towards a theory of user judgment of aesthetics and user interface quality. ACM Trans ComputHuman Interact 15(4):15,1–15,30Google Scholar
  18. 18.
    van der Heijden H (2003) Factors influencing the usage of websites: the case of a generic portal in the netherlands. Inf Manag 40:541–549CrossRefGoogle Scholar
  19. 19.
    Hussain F (1968) An experimental enquiry into the phenomena of aesthetics judgments under varying time conditions. PhD thesis, University of, London, UKGoogle Scholar
  20. 20.
    Jobson D, Rahman Zu, Woodell G (1997) Properties and performance of a center/surround retinex. IEEE Trans Image Process 6(3):451–462CrossRefGoogle Scholar
  21. 21.
    Kinchla R, Wolfe J (1979) The order of visual processing: “top-down,” “bottom-up,” or “middle-out”. Percept Psychophys 25(3):225–231. doi:10.3758/BF03202991 CrossRefGoogle Scholar
  22. 22.
    Kolås Ø, Farup I, Rizzi A (2011) Spatio-temporal retinex-inspired envelope with stochastic sampling: a framework for spatial color algorithms. J Imaging Sci Technol 55(4):040,503–1040,503–10CrossRefGoogle Scholar
  23. 23.
    Land E H, Mccann J (1971) Lightness and retinex theory. J Opt Soc Amer 61(1):1–11CrossRefGoogle Scholar
  24. 24.
    Lavie T, Tractinsky N (2004) Assessing dimensions of perceived visual aesthetics of web sites. Int J Hum-Comput Stud 60(3):269–298CrossRefGoogle Scholar
  25. 25.
    Lindgaard G, Dudek C (2003) What is this evasive beast we call user satisfaction? vol 15.
  26. 26.
    McCann J, Rizzi A (2003) The spatial properties of contrast. In: Color imaging conference 2003, society for imaging science and technology, pp 51–58Google Scholar
  27. 27.
    McCann J J (2004) Retinex at 40. J Electron Imag 13(1):6–7CrossRefGoogle Scholar
  28. 28.
    Meylan L, Susstrunk S (2006) High dynamic range image rendering with a retinex-based adaptive filter. IEEE Trans Image Process 15(9):2820–2830CrossRefGoogle Scholar
  29. 29.
    Monk A (2008) The product as a fixed-effect fallacy. Hum-Comput Interact 19 (4):371–375CrossRefGoogle Scholar
  30. 30.
    Moroney N, Fairchild M D, Hunt R W, Li C, Luo M R, Newman T (2002) The ciecam02 color appearance model. In: Color and imaging conference, society for imaging science and technology, vol 2002, pp 23–27Google Scholar
  31. 31.
    Nasar J L (1999) Directions in person-environment research and practice, ashgate, chap perception and evaluation of residential street scenes, pp 229–248Google Scholar
  32. 32.
    Ouni S, Chambah M, Saint Jean C A R (2008) Daf: differential ace filtering. image quality assessment by automatic color equalization. In: Proc. SPIE 6808, image quality and system performance VGoogle Scholar
  33. 33.
    Parraman C, Rizzi A (2006) Searching user preferences in printing: a proposal for an automatic solution. Printing TechnologyGoogle Scholar
  34. 34.
    Parraman C, Rizzi A (2007) User preferences in colour enhancement unsupervised methods for printing. In: Proc. IS&T/SPIE electronic imaging, pp 1–11Google Scholar
  35. 35.
    Petersen M G, Hallnas L, Jacob R J K (2008) Introduction to special issue on the aesthetics of interaction. ACM Trans ComputHum Interact 15(3):10,1–10,5Google Scholar
  36. 36.
    Preece J (2004) Humancomputer interaction. AddisonWesleyGoogle Scholar
  37. 37.
    Provenzi E, Caselles V (2014) A wavelet perspective on variational perceptually-inspired color enhancement. Int J Comput Vis 106(2):153–171MathSciNetCrossRefMATHGoogle Scholar
  38. 38.
    Provenzi E, Fierro M, Rizzi A, De Carli L, Gadia D, Marini D (2007) Random spray retinex: a new retinex implementation to investigate the local properties of the model. Trans Img Proc 16(1):162–171MathSciNetCrossRefGoogle Scholar
  39. 39.
    Provenzi E, Gatta C, Fierro M, Rizzi A (2008) A spatially variant white-patch and gray-world method for color image enhancement driven by local contrast. IEEE Trans Pattern Anal Mach Intell 30(10):1757–1770CrossRefGoogle Scholar
  40. 40.
    Rizzi A, McCann JJ (2007) On the behavior of spatial models of color. In: Proc. IS&T/SPIE electronic imaging 2007Google Scholar
  41. 41.
    Rizzi A, Gatta C, Marini D (2003) A new algorithm for unsupervised global and local color correction. Pattern Recogn Lett 24(11):1663–1677CrossRefGoogle Scholar
  42. 42.
    Rizzi A, Gatta C, Marini D (2004) From retinex to automatic color equalization: issues in developing a new algorithm for unsupervised color equalization. J Electron Imaging 13(1):75–84CrossRefGoogle Scholar
  43. 43.
    Schenkman BN, Jonsson FU (2000) Aesthetics and preferences of web pages. Behav Inf Technol 19(5):367–377. doi:10.1080/014492900750000063 CrossRefGoogle Scholar
  44. 44.
    Sekuler R, Blake R (1994) Perception. McGraw-HillGoogle Scholar
  45. 45.
    Tractinsky N, Katz A S, Ikar D (2000) What is beautiful is usable. Interact Comput 13(2):127–145CrossRefGoogle Scholar
  46. 46.
    Tractinsky N, Cokhavi A, Kirschenbaum M, Sharfi T (2006) Evaluating the consistency of immediate aesthetic perceptions of web pages. Int J Hum-Comput Stud 64(11):1071–1083CrossRefGoogle Scholar
  47. 47.
    Vonikakis V, Andreadis I, Gasteratos A (2008) Fast centre-surround contrast modification. IET Image Process 2(1):19–34CrossRefGoogle Scholar
  48. 48.
    WAI (2015) Web accessibility initiative.
  49. 49.
    Ware C (2012) Information visualization: perception for design. Morgan Kaufmann Publishers Inc.Google Scholar
  50. 50.
    WCAG (2008) Web content accessibility guidelines 2. 0
  51. 51.
    Zhang P, Li N (2005) The importance of affective quality. Commun ACM 48 (9):105–108CrossRefGoogle Scholar
  52. 52.
    Zosso D, Tran G, Osher S J (2015) Non-local retinex - a unifying framework and beyond. SIAM J Imag Sci 8(2):787–826MathSciNetCrossRefMATHGoogle Scholar
  53. 53.
    Zuffi S, Brambilla C, Beretta G, Scala P (2007) Human computer interaction: legibility and contrast. In: Proceedings of the 14th international conference on image analysis and processing. IEEE computer society, Washington, DC, USA, ICIAP ’07, pp 241–246Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Alessandro Rizzi
    • 1
  • Daniela Fogli
    • 2
  • Barbara Rita Barricelli
    • 1
  1. 1.Department of Computer ScienceUniversità degli Studi di MilanoMilanoItaly
  2. 2.Department of Information EngineeringUniversità degli Studi di BresciaBresciaItaly

Personalised recommendations