Multimedia Tools and Applications

, Volume 76, Issue 6, pp 8329–8354 | Cite as

VoIP-quality of experience modeling: E-model and simplified E-model enhancement using bias factor

Article

Abstract

The E-model is a non-intrusive measurement method that many researchers have applied to the study of VoIP quality measurement. While the Simplified E-model is a modified version from the original, it can still be used as an alternative solution. Nevertheless, it has been found that the E-model and the Simplified E-model still require further improvement. Therefore, to enhance the original E-model, this paper proposes a new factor. Moreover, the Simplified E-model has also been enhanced by the same approach. Based-on the Thai environment, the new factor called Thai Bias factor, can be computed by subtracting the subjective test results using conversation tests with native Thai users from the objective test results using an E-model tool and the Simplified E-model calculation. Of course, both E-mode tests and conversation tests were conducted with the same VoIP system and test scenarios. The Enhanced E-model and the Simplified E-model using the Thai Bias factor were then evaluated by comparing the test set from other groups of native Thai users. After evaluation of the improved models, it has been found that the Enhanced E-model and the enhanced Simplified E-model can gain higher confidence. The Enhanced E-model delivers improved accuracy and reliability at approximately more than 20 % when compared to an available E-model tool, while the Enhanced Simplified E-model delivers improved performance at approximately more than 46 % when compared to Simplified E-model calculation.

Keywords

VoIP QoE modeling E-model Subjective tests MOS Thai 

References

  1. 1.
    Al-Akhras M, Zedan H, John R, ALMomani I (2009) Non-intrusive speech quality prediction in VoIP networks using a neural network approach. Neurocomputing 72(10–12):2595–2608. doi:10.1016/j.neucom.2008.10.019 CrossRefGoogle Scholar
  2. 2.
    Altbach PG (2004) The past and future of Asian universities. In: Altbach PG, Umakoshi T (eds) Asian universities: historical perspectives and contemporary challenges. The Johns Hopkins University Press, Baltimore London, pp 13–32Google Scholar
  3. 3.
    Assem H, Malone D, Dunne J, O’Sullivan P (2013) Monitoring VoIP call quality using improved simplified E-model. In: Proceedings of ICNC 2013, San Diego, pp. 927–931Google Scholar
  4. 4.
    Batteram H, Damm G, Mukhopadhyay A, Philippart L, Odysseos R, Urrutia-Valdés C (2010) Delivering quality of experience in multimedia networks. Bell Labs Tech J 15(1):175–194. doi:10.1002/bltj.v15:1 CrossRefGoogle Scholar
  5. 5.
    Boutremans C, Iannaccone G, Diot C (2002) Impact of link failures on VoIP performance. In: Proceedings of NOSSDAV 2002, Miami Beach, pp. 63–71Google Scholar
  6. 6.
    Cai Z, Kitawaki N, Yamada T, Makino S (2010) Comparison of MOS evaluation characteristics for Chinese, Japanese, and English in IP telephony. In: Proceedings of IUCS, Beijing, pp. 1–4Google Scholar
  7. 7.
    Cote N (2011) Integral and diagnostic Instrusive prediction of speech quality. Springer, Berlin HeidelbergCrossRefGoogle Scholar
  8. 8.
    Daengsi T (2012) VoIP Quality Measurement: Recommendation of MOS and Enhanced Objective Measurement Method for Standard Thai Spoken Language. Dissertation, King Mongkut’s University of Technology North BangkokGoogle Scholar
  9. 9.
    Daengsi T, Preechayasomboon A, Sukparungsee S, Chootrakool P, Wutiwiwatchai C (2010) The Development of a Thai Speech Set for Telephonometry. In: Proceedings of O-COCOSDA2010, Kathmandu, Paper 53Google Scholar
  10. 10.
    Daengsi T, Sukparungsee S, Wutiwiwatchai C, Preechayasomboon A (2012) Comparison of percetual voice quality of VoIP provided by G.711 and G.729 using conversation-opinion tests. Int J Comput Internet Manag 20(1):21–26Google Scholar
  11. 11.
    Daengsi T, Wuttidittachotti T (2013) VoIP Quality Measurement: Enhanced E-model Using Bias Factor. In: Proceedings of IEEE GLOBECOM 2013, Atlanta, pp. 1329–1334Google Scholar
  12. 12.
    Daengsi T, Wuttidittachotti P (2015) QoE Modeling: A Simplified E-model Enhancement Using Subjective MOS Estimation odel. In: Proceedings of ICUFN 2015, Sapporo, pp. 386–390.Google Scholar
  13. 13.
    De Pessemier T, Stevens I, De Marez L, Martens L, Joseph W (2014) Analysis of the quality of experience of a commercial voice-over-IP service. Multimed Tools Appl. doi:10.1007/s11042-014-1895-4 Google Scholar
  14. 14.
    De Rango F, Tropea M, Fazio P, Marano S (2006) Overview on VoIP: subjective and objective measurement methods. Int J Comput Sci Netw Secur 6(1B):140–153Google Scholar
  15. 15.
    Ding L, Goubran R A (2003) Speech quality prediction in VoIP using the extended E-model. In: Proceedings of IEEE GLOBECOM, San Francisco, pp. 3974–3978Google Scholar
  16. 16.
    Ding L, Lin Z, Radwan A, El-Hennawey MS, Goubran RA (2007) Non-intrusive single-ended speech quality assessment in VoIP. Speech Commun 49(6):477–489CrossRefGoogle Scholar
  17. 17.
    Fluke Corporation (2005) Quality Management: Troubleshooting Techniques for Voice over IP. Available at http://www.tequipment.net/pdf/FlukeNetworks/ApplicationNote-QualityManagement-TroubleshootingTechniquesForVoiceOverIP.pdf. Accessed May 2015
  18. 18.
    Gandour J, Wong D, Hutchins G (1998) Pitch processing in the human brain is influenced by language experience. NeuroReport 9:2115–2119CrossRefGoogle Scholar
  19. 19.
    Goudarzi M (2008) Evaluation of Voice Quality in 3G Mobile Networks. Thesis, University of PlymouthGoogle Scholar
  20. 20.
    Hiwasaki Y, Ohmuro H (2009) ITU-T G.711.1: extending G.711 to higher-quality wideband speech. IEEE Commun Mag 47(10):110–116. doi:10.1109/MCOM.2009.5273817 CrossRefGoogle Scholar
  21. 21.
    Huang Y-T, Neoh C-A, Lin S-Y, Shi H-Y (2013) Comparisons of Prediction Models of Myofascial Pain Control after Dry Needling: A Prospective Study. Evidence-Based Complementary and Alternative Medicine 10.1155/2013/478202
  22. 22.
    Indepth: Packet Loss Burstiness. Available at http://www.voiptroubleshooter.com/indepth/burstloss.html. Accessed May 2015
  23. 23.
    ITU-T (1996) ITU-T Recommendation P.800: Methods for subjective determination of transmission qualityGoogle Scholar
  24. 24.
    ITU-T (1996) ITU-T Recommendation P.800.1: Mean Opinion Score (MOS) terminologyGoogle Scholar
  25. 25.
    ITU-T (2001) ITU-T Recommendation P.862: Perceptual evaluation of speech quality (PESQ): An objective method for end-to-end speech quality assessment of narrow-band telephoneGoogle Scholar
  26. 26.
    ITU-T (2003) ITU-T Recommendation G.114: One-way transmission timeGoogle Scholar
  27. 27.
    ITU-T (2007) ITU-T Recommendation P.805: Subjective evaluation of conversational qualityGoogle Scholar
  28. 28.
    ITU-T (2009) Question 7/12 – Methods, tools and test plans for the subjective assessment of speech, audio and audiovisual quality interactions. Available at http://www.itu.int/ITU-T/studygroups/com12/sg12-q7.html. Accessed May 2015
  29. 29.
    ITU-T (2009) ITU-T Recommendation G.107: The E-model: a computational model for use in transmission planningGoogle Scholar
  30. 30.
    ITU-T (2011) ITU-T Recommendation G.107: The E-model: a computational model for use in transmission planningGoogle Scholar
  31. 31.
    ITU-T (2015) Accessibility and Standardization. Available at http:// http://www.itu.int/en/ITU-T/studygroups/com16/accessibility/Pages/default.aspx. Accessed October 2015
  32. 32.
    ITU-T Test Signals for Telecommunication Systems (2015) Test Vectors Associated to Rec. ITU-T P.501. Available at http://www.itu.int/net/itu-t/sigdb/genaudio/AudioForm-g.aspx?val=10000501. Accessed May 2015
  33. 33.
    Jiang C, Huang P (2011) Research of Monitoring VoIP Voice QoS. In: Proceedings of ICICIS 2011, Hong Kong, pp. 499–502Google Scholar
  34. 34.
    Johannesson NO (1997) The ETSI computation model: a tool for transmission planning of telephone networks. IEEE Commun Mag 35(1):70–79. doi:10.1109/35.568213 CrossRefGoogle Scholar
  35. 35.
    Karapantazis S, Pavlidou F-N (2009) VoIP: a comprehensive survey on a promising technology. Comput Netw 53(12):2050–2090. doi:10.1016/j.comnet.2009.03.010 CrossRefGoogle Scholar
  36. 36.
    Khan A, Sun L, Jammeh E, Ifeachor E (2010) QoE-driven adaptation scheme for video applications over wireless networks. IET Commun 4(11):1337–1347. doi:10.1049/iet-com.2009.0422 CrossRefGoogle Scholar
  37. 37.
    Kim HJ, Choi SG (2014) QoE assessment model for multimedia streaming services using QoS parameters. Multimed Tools Appl 72(3):2163–2175. doi:10.1007/s11042-013-1507-8 CrossRefGoogle Scholar
  38. 38.
    Laghari K, Falk T, Hyder M, Haun M, Hoene C, Crespi N (2014) An investigation into the relationship between perceived quality-of-experience and virtual acoustic environments: the case of 3D audio telephony. J Univers Comput Sci 19(12):1718–1735. doi:10.3217/jucs-019-12-1718 Google Scholar
  39. 39.
    Mahdi AE, Picovici D (2009) Advances in voice quality measurement in modern telecommunications. Digit Signal Process 19(1):79–103. doi:10.1016/j.dsp.2007.11.006 CrossRefGoogle Scholar
  40. 40.
    Markopoulou A, Iannaccone G, Bhattacharyya S, Chuah C-N, Diot C (2004) Characterization of Failures in an IP Backbone. In: Proceedings of INFOCOM 2004. Hong Kong, pp. 2307–2317Google Scholar
  41. 41.
    Markopoulou A, Tobagi F, Karam M (2006) Loss and delay measurements of internet backbones. Comput Commun 29(10):1590–1604. doi:10.1016/j.comcom.2005.07.011 CrossRefGoogle Scholar
  42. 42.
    MathWorks (2013) Curve Fitting Toolbox. Available at https://www.mathworks.com/products/datasheets/pdf/curve-fitting-toolbox.pdf. Accessed May 2015.
  43. 43.
    Narbutt M, Davis M (2005) Assessing the quality of VoIP transmission affected by playout buffer scheme. In: Proceedings of MESAQIN 2005, Prague, Paper 15Google Scholar
  44. 44.
    Ong H-C, Chan S-Y (2011) A Comparison on Neural Network Forecasting. In: Proceedings of Int. Conf. Circuits, System and Simulation, Singapore, pp. 56–60Google Scholar
  45. 45.
    Praat: doing phonetics by computer. Available at http://www.fon.hum.uva.nl/praat/. Accessed May 2015
  46. 46.
    Psytechnics (2003) Comparison between subjective listening quality and P.862 PESQ score. Available at http://www.sageinst.com/downloads/960B/wp_sub_v_pesq.pdf. Accessed May 2015
  47. 47.
    Radonjic V, Ljubisavljevic AK, Stojanovic M (2012) Quality of experience and users elasticity considerations for modelling competition between service providers in NGN. Elektron Elektrotech 18(8):113–116. doi:10.5755/j01.eee.18.8.2640 Google Scholar
  48. 48.
    Ren J, Zhang CM, Huang WC, Mao D (2010) Enhancement to E-model on standard deviation of packet delay. In: Proceedings of ICIS 2010, Chengdu, pp. 256–259Google Scholar
  49. 49.
    Ren J, Zhang H, Zhu Y, Gao C (2008) Assessment of effects of different language in VOIP. In: Proceedings of ICALIP 2008, Shanghai, pp. 1624–1628Google Scholar
  50. 50.
    Sittiprapaporn W, Chindaduangratn C, Kotchabhakdi N (2004) Long-term memory traces for familiar spoken words in tonal languages as revealed by the mismatch negativity Songklanakarin. J Sci Technol 26(6):779–786Google Scholar
  51. 51.
    Sodanil M, Nitsuwat S, Haruechaiyasak C (2010) Thai word recognition using hybrid MLP-HMM. Int J Comput Sci Net Sec 10(3):103–110Google Scholar
  52. 52.
    Soontayatron S (2010) Socio-Cultural Changes in Thai Beach Resorts: A Case Study of Koh Samui Island, Thailand. Dissertation, Bouenemouth UniversityGoogle Scholar
  53. 53.
    Sun L, Mkwawa I-H, Jammeh E, Ifeachor E (2013) Guide to voice and video over IP - for fixed and mobile networks. Springer, LondonCrossRefGoogle Scholar
  54. 54.
    Takahashi A, Kurashima A, Yoshino H (2006) Objective assessment methodology for estimating Conv.Ersational quality in VoIP. IEEE trans. Audio, Speech, Language Process 14(6):1983–1993CrossRefGoogle Scholar
  55. 55.
    Thanasankit T, Corbitt B (2002) Understanding Thai culture and its impact on requirements engineering process management during information systems development. Asian Acad Manag J 7(1):103–126Google Scholar
  56. 56.
    Triyason T, Kanthamanon P (2015) E-model modification for multi-languages over IP. Elektron Elektrotech 21(1):82–87. doi:10.5755/j01.eee.21.1.7612 Google Scholar
  57. 57.
    Vatanasakdakul S, Ambra JD (2006) An Exploratory Study of the Socio-Cultural Impact on the Adoption of E-Commerce for Firms in the Tourism Industry of Thailand. In: Proceedings of ECIS 2006, Goteborg, Peper 195Google Scholar
  58. 58.
    Voznak M (2011) E-model modification for case of cascade codecs arrangement. Int J Math Mod Meth Appl S 5(8):1301–1309Google Scholar
  59. 59.
    Wutiwiwatchai C, Furui S (2007) Thai speech processing technology: a review. Speech Comm 49(1):8–27. doi:10.1016/j.specom.2006.10.004 CrossRefGoogle Scholar
  60. 60.
    Wuttidittachotti P, Daengsi T, Preechayasomboon A, Wutiwiwatchai C, Sukparungsee S (2013) VoIP quality of experience: A study of perceptual voice quality from G.729, G.711 and G.722 with Thai users referring to delay effects. In: Proceedings of ICUFN 2013, Da Nang, pp. 401–406Google Scholar
  61. 61.
    Zhang H, Xie L, Byun J, Flynn P, Shim Y Packet Loss Burstiness and Enhancement to the E-Model. In: Proceedings of SNPD/SAWN 2005. Towson university, pp 214–219Google Scholar
  62. 62.
    Zhou X, Muller F, Kooij R E, Van Mieghem, P (2006) Estimation of Voice over IP Quality in the Netherlands. In: Proceedings of IPS-MoMe 2006, SalzburgGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Data Communication and Networking Faculty of Information TechnologyKing Mongkut’s University of Technology North BangkokBangkokThailand
  2. 2.Department of Enterprise ServicesJADS Comm LimitedBangkokThailand

Personalised recommendations