Multimedia Tools and Applications

, Volume 76, Issue 5, pp 6755–6783 | Cite as

A systematic reallocation and prioritization scheme for error-resilient transmission of video packets

  • Kyungmin Go
  • Myungchul Kim
  • Sungwon Kang
  • Yohaan Yoon


This paper proposes a novel video transmission scheme that provides error-resilient transmission of encoded video on a per-packet basis over wireless networks. In conventional schemes, the error-resilient transmission of encoded video has been conducted using the unit of a video frame or data partition. However, in order to provide higher error-resilient transmission for significant video data that critically impacts the decoding when it is lost, the unit of prioritized video transmission should be more fine-grained. Moreover, the transmission overhead incurred by the application of the prioritized video transmission should be further minimized. In order to overcome these limitations, this paper proposes a scheme that identifies and reallocates significant video data within the unit of inter-frame dependency, which is a hierarchical relationship between video frames, in order to enhance the compression efficiency such as a group of pictures. Consequently, the encoded video is transmitted with different transmission priorities on a per-packet basis depending on the packet’s significance for decoding. The evaluation results with standard definition and high definition videos demonstrate that the proposed scheme has significant performance enhancements over the conventional video frame prioritization scheme in terms of transmission overhead, transmitted video data utilization, peak signal-to-noise ratio, and subject quality test.


Video packets Packet reallocation Prioritized transmission Quality of Service Wi-Fi 


  1. 1.
  2. 2.
  3. 3.
    Baccaglini E, Marchetto G, Tillo T, Olmo G (2014) Efficient slice‐aware H. 264/AVC video transmission over time‐driven priority networks. Wiley Int J Commun Syst 27(12):3822–3836CrossRefGoogle Scholar
  4. 4.
    Cisco. 2014. Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update, 2013–2018.Google Scholar
  5. 5.
    Dong Y, Chen H (2015) A content-aware error resilient scheme for wireless video streams with data embedding. Springer Wirel Pers Commun 82(1):215–228CrossRefGoogle Scholar
  6. 6.
    Evensen K, Petlund A, Riiser H, Vigmostad P, Kaspar D, Griwodz C, and Halvorsen P (2011) Mobile video streaming using location-based network prediction and transparent handover. In Proceedings of the 21st international workshop on Network and operating systems support for digital audio and video (NOSSDAV’11). 21–26Google Scholar
  7. 7.
    Feng N, Chang Y (2015) Unequal loss protection for H. 264/AVC video streaming over wireless networks. Springer J Sig Process Syst 78(2):115–121MathSciNetCrossRefGoogle Scholar
  8. 8.
    Go K, Kim M, Kang S, Lee B, Yoon Y (2014) Cross-layer packet prioritization for error-resilient transmission of IPTV system over wireless network. In Proceedings of ACM Multimedia Systems Conference (MMsys’14). 180–190Google Scholar
  9. 9.
    Greengrass J, Evans J, Begen AC (2009) Not All packets Are equal part II: the impact of network packet loss on video quality. IEEE Internet Comput 13(2):74–82CrossRefGoogle Scholar
  10. 10.
    Haghani E, Parekh S, Calin D, Kim E, Ansari N (2009) A quality-driven cross-layer solution for MPEG video streaming over WiMAX networks. IEEE Trans Multimed 11(6):1140–1147CrossRefGoogle Scholar
  11. 11.
    Han GJ, Ohm JR, Han WJ, Wiegand T (2012) Overview of the high efficiency video coding (HEVC) standard. IEEE Trans Circ Syst Video Technol 22(12):1649–1668CrossRefGoogle Scholar
  12. 12.
    Huo Y, Hellge C, Wiegand T, Hanzo L (2014) A tutorial and review on inter-layer FEC coded layered video streaming. IEEE Commun Surv Tutor 17(2):1166–1207CrossRefGoogle Scholar
  13. 13.
    IEEE Std 802.1D™ (2004) IEEE Standard for local and metropolitan area networks, Media Access Control (MAC) Bridges. IEEE, New YorkGoogle Scholar
  14. 14.
    IEEE Std 802.1e (2005) IEEE Standard for Information technology-Telecommunications and information exchange between systems-Local and metropolitan area networks–Specific requirements Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications Amendment 8: Medium Access Control (MAC) Quality of Service Enhancements. IEEEGoogle Scholar
  15. 15.
    ISO/IEC 23009–1:2012. Information technology — Dynamic adaptive streaming over HTTP (DASH) — Part 1: Media presentation description and segment formatsGoogle Scholar
  16. 16.
    ITU-T Recommendation P.910 (2008) Subjective video quality assessment methods for multimedia applicationsGoogle Scholar
  17. 17.
    Kambhatla KK, Paluri S, Matyjas JD, Kumar S (2015) Cross-layer prioritized H. 264 video packetization and error protection over noisy channels. Springer Multimed Tools Appl. published online, 1–23Google Scholar
  18. 18.
    Ke CH, Lin KW, Huang CA, Chen YS, and Park SO (2015) Cross-layer quality enhancement scheme for video transmission over multi-hop wireless networks. Springer Multimed Tools Appl, published online, 1–17Google Scholar
  19. 19.
    Lai CF, Huang YM, Chen JL, Ji W, Chen M (2011) Design and integration of the OpenCore-based mobile TV framework for DVB-H/T wireless network. Multimedia Systems 17(4):299–311CrossRefGoogle Scholar
  20. 20.
    Lee J, Liao W, Chen JM, Lee HH (2009) A practical QoS solution to voice over IP in IEEE 802.11 WLANs. IEEE Commun Mag 47(4):111–117CrossRefGoogle Scholar
  21. 21.
    Nazir S, Vukobratović D, Stanković V, Andonović I, Nybom K, and Grönroos S (2014) Unequal error protection for data partitioned H. 264/AVC video broadcasting. Springer Multimed Tools Appl, published online, 1–23Google Scholar
  22. 22.
    Richardson IE (2011) The H. 264 advanced video compression standard. WileyGoogle Scholar
  23. 23.
    Schierl T, Gruneberg K, Wiegand T (2009) Scalable video coding over RTP and MPEG-2 transport stream in broadcast and IPTV channels. IEEE Wirel Commun 16(5):64–71CrossRefGoogle Scholar
  24. 24.
    Schwarz H, Marpe D, Wiegand T (2007) Overview of the scalable video coding extension of the H. 264/AVC standard. IEEE Trans Circ Syst Video Technol 17(9):1103–1120CrossRefGoogle Scholar
  25. 25.
    Siebert P, Van Caenegem TNM, Wagner M (2009) Analysis and improvements of zapping times in IPTV systems. IEEE Trans Broadcast 55(2):407–418CrossRefGoogle Scholar
  26. 26.
    Souryal MR, Klein-Berndt L, Miller LE, Moayeri N (2006) Link assessment in an indoor 802.11 network. In Proceedings of IEEE Wireless Communications and Networking Conference (WCNC’06). 1402–1407Google Scholar
  27. 27.
    Srinivasan SK, Vahabzadeh-Hagh J, Reisslein M (2010) The effects of priority levels and buffering on the statistical multiplexing of single-layer H.264/AVC and SVC encoded video streams. IEEE Trans Broadcast 56(3):281–287CrossRefGoogle Scholar
  28. 28.
    Stockhammer T (2011) Dynamic adaptive streaming over HTTP--: standards and design principles. In Proceedings of ACM Multimedia Systems Conference (MMsys’11). 133–144Google Scholar
  29. 29.
    Talari A, Kumar S, Rahnavard N, Paluri S, Matyjas JD (2013) Optimized cross-layer forward error correction coding for H. 264 AVC video transmission over wireless channels. EURASIP J Wirel Commun Netw 2013(1):1–13CrossRefGoogle Scholar
  30. 30.
    Tian X, Le TM, Lian Y (2011) Review of CAVLC, arithmetic coding, and CABAC. In entropy coders of the H. 264/AVC standard. Springer, Berlin, pp 29–39Google Scholar
  31. 31.
    Wang H, Liu G (2014) Priority and delay aware packet management framework for real-time video transport over 802.11e WLANs. Springer Multimed Tools Appl 69(3):621–641CrossRefGoogle Scholar
  32. 32.
    Wiegand T, Girod B (2012) Multi-frame motion-compensated prediction for video transmission. Springer Sci Bus Media 636Google Scholar
  33. 33.
    Wiegand T, Sullivan GJ (2011) The picturephone is here. Really. IEEE Spectr 48(9):50–54CrossRefGoogle Scholar
  34. 34.
    Wien M (2014) High efficiency video coding: coding tools and specification. Springer VerlagGoogle Scholar
  35. 35.
    Xiph.Org Foundation.
  36. 36.
    Yao XW, Wang WL, Yang SH, Cen YF, Yao XM, Pan TQ (2014) Ipb-frame adaptive mapping mechanism for video transmission over IEEE 802.11 e WLANs. ACM SIGCOMM Comput Commun Rev 44(2):5–12CrossRefGoogle Scholar
  37. 37.
    Yaser PF, Panos N, and Hussein A (2008) Efficient transmission of H.264 video over multirate IEEE 802.11e WLANs. EURASIP J Wirel Commun Netw. 11Google Scholar
  38. 38.
  39. 39.
    Zeadally S, Moustafa H, Siddiqui F (2011) Internet protocol television (IPTV): architecture, trends, and challenges. IEEE Syst J 5(4):518–527CrossRefGoogle Scholar
  40. 40.
    Ziviani A, Wolfinger BE, Rezende JF, Duarte OCMB, Fdida S (2005) Joint adoption of QoS schemes for MPEG streams. Springer Multimed Tools Appl 26(1):59–80CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Kyungmin Go
    • 1
  • Myungchul Kim
    • 1
  • Sungwon Kang
    • 1
  • Yohaan Yoon
    • 1
  1. 1.School of ComputingThe Korea Advanced Institute of Science and Technology (KAIST)DaejeonSouth Korea

Personalised recommendations