Multimedia Tools and Applications

, Volume 76, Issue 5, pp 6709–6729 | Cite as

A scrambling framework for block transform compressed image

  • Kazuki Minemura
  • KokSheik Wong
  • Xiaojun Qi
  • Kiyoshi Tanaka


In this work, we propose a scrambling framework for block transform compressed image. First, three attacks are proposed to sketch the outline of the original image directly from its scrambled counterpart by exploiting information deduced from the transformed components. Based on the proposed sketch attacks, a scrambling framework aiming to minimize the bitstream size overhead and prevent the leakage of visual information is put forward. In particular, the DC components are manipulated within each non-overlapping region to achieve the scrambling while simultaneously reducing the bitstream size overhead. The non-DC components are shuffled and substituted to generate a completely distorted image while preventing information leakage. The ideas are implemented in JPEG to verify its performance and compare to that of the conventional JPEG based scrambling methods. Results indicate that the proposed methods exhibit stable performance in terms of the bitstream size overhead when using different quality factors, and it is able to withstand the proposed sketch attacks as well as the classical cryptographic attacks.


Scrambling block transform sketch attack JPEG 


  1. 1.
    Arbelaez P, Maire M, Fowlkes C, Malik J (2011) Contour detection and hierarchical image segmentation. IEEE Trans Pattern Anal Mach Intell 33(5):898–916CrossRefGoogle Scholar
  2. 2.
    Ayoub F, Singh K (1984) Cryptographic techniques and network security. IEE Proc F Commun Radar Signal Process 131(7):684–694CrossRefGoogle Scholar
  3. 3.
    Bharat B, Changgui S, Sheng-Yih W (2004) MPEG video encryption algorithms. Multimed Tools Appl 24(1):57–79. doi:10.1023/B:MTAP.0000033983.62130.00 CrossRefGoogle Scholar
  4. 4.
    Cheng H, Li X (2000) Partial encryption of compressed images and videos. IEEE Trans Signal Process 48(8):2439–2451CrossRefGoogle Scholar
  5. 5.
    Haralick RM, Shapiro Linda G (1992) Computer and robot vision, 1st edn. Addison Wesley Longman Publishing Co Inc, BostonGoogle Scholar
  6. 6.
    ISO/IEC (1993). ISO/IEC 11172-3:1993 Information technology – coding of moving pictures and associated audio for digital storage media at up to about 1,5 Mbit/s – part 2: videoGoogle Scholar
  7. 7.
    ISO/IEC (1994). ISO/IEC 10918-1:1994 Information technology – digital compression and coding of continuous-tone still images: requirements and guidelinesGoogle Scholar
  8. 8.
    ISO/IEC (2000). ISO/IEC 13818-2:2000 Information technology – generic coding of moving pictures and associated audio information: videoGoogle Scholar
  9. 9.
    ISO/IEC (2003). ISO/IEC 14496-10:2003 Information technology – coding of audio-visual objects – part 10: advanced video codingGoogle Scholar
  10. 10.
    Johnson M, Ishwar P, Prabhakaran V, Schonberg D, Ramchandran K (2004) On compressing encrypted data. IEEE Trans Signal Process:2992–3006. doi:10.1109/TSP.2004.833860
  11. 11.
    Kundur D, Karthik K (2004) Video fingerprinting and encryption principles for digital rights management. Proc IEEE 92(6):918–932CrossRefGoogle Scholar
  12. 12.
    Li S, Chen G, Cheung A, Bhargava B, Lo K.T (2007) On the design of perceptual MPEG-video encryption algorithms. IEE Trans Circuits Syst Video Technol 17(2):214–223CrossRefGoogle Scholar
  13. 13.
    Li W, Yuan Y (2007) A leak and its remedy in JPEG image encryption. Int J Comput Math 84:1367–1378MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Lian S, Liu Z, Ren Z, Wang H (2007) Commutative encryption and watermarking in video compression. IEEE Trans Circuits Syst Video Technol 17:774–778CrossRefGoogle Scholar
  15. 15.
    Lian S, Sun J, Wang Z (2004) A novel image encryption scheme based on JPEG encoding. In: Proceedings, eighth international conference on information visualisation, IV 2004, pp 217–220Google Scholar
  16. 16.
    Massoudi A, Lefebvre F, De Vleeschouwer C, Macq B, Quisquater JJ (2008) Overview on selective encryption of image and video: challenges and perspectives. EURASIP J Inf Secur 2008:5:1– 5:18Google Scholar
  17. 17.
    Matsumoto M, Nishimura T (1998) Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generator. ACM Trans Modeling Comput Simul 8:3–30CrossRefMATHGoogle Scholar
  18. 18.
    Niu X, Zhou C, Ding J, Yang B (2008) JPEG encryption with file size preservation. In: IIHMSP’08 int conf, pp 308–311Google Scholar
  19. 19.
    Otsu N (1979) A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern 9:62–66CrossRefGoogle Scholar
  20. 20.
    Parvin Z, Seyedarabi H, Shamsi M (2014) A new secure and sensitive image encryption scheme based on new substitution with chaotic function. Multimed Tools Appl:1–18. doi:10.1007/s11042-014-2115-y
  21. 21.
    Pazarci M, Dipcin V (2002) A MPEG2-transparent scrambling technique. IEEE Trans Consum Electron 48(2):345–355CrossRefGoogle Scholar
  22. 22.
    Pennebaker WB, Mitchell JL (1992) JPEG still image data compression standard, 1st edn. Kluwer Academic Publishers, NorwellGoogle Scholar
  23. 23.
    Rao K.R, Yip P (1990) Discrete cosine transform: algorithms, advantages, applications. Academic Press Professional, Inc., San DiegoCrossRefMATHGoogle Scholar
  24. 24.
    Semantics-sensitive Integrated Matching for Picture LIbraries: SIMPLIcity image dataset.
  25. 25.
    Subramanyam AV, Emmanuel S (2014) Partially compressed-encrypted domain robust jpeg image watermarking. Multimed Tools Appl 71(3):1311–1331. doi:10.1007/s11042-012-1272-0 CrossRefGoogle Scholar
  26. 26.
    Sullivan G, Ohm J, Han W.J, Wiegand T, Wiegand T (2012) Overview of the high efficiency video coding (HEVC) standard. IEEE Trans Circuits Syst Video Technol 22(12):1649– 1668CrossRefGoogle Scholar
  27. 27.
    Takayama M, Tanaka K, Takagi K, Nakajima Y (2008) A scalable video scrambling method in MPEG compressed domain. In: 2008 3rd int symp commun control and signal process, pp 1035– 1040Google Scholar
  28. 28.
    Takayama M, Tanaka K, Yoneyama A, Nakajima Y (2006) A video scrambling scheme applicable to local region without data expansion. In: Int conf multimedia and expo, pp 1349–1352Google Scholar
  29. 29.
    Tang Z, Zhang X, Lan W (2014) Efficient image encryption with block shuffling and chaotic map. Multimedia tools and applications, pp. 1–20. doi:10.1007/s11042-014-1861-1
  30. 30.
    The Independent JPEG Group’s (2012) The Independent JPEG Group’s JPEG software.
  31. 31.
    University of Southern California - signal and image processing institute: USC-SIPI image database.
  32. 32.
    Wang Z, Bovik A, Sheikh H, Simoncelli E (2004) Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process 13(4):600–612CrossRefGoogle Scholar
  33. 33.
    Wong K, Tanaka K (2010) DCT based scalable scrambling method with reversible data hiding functionality. In: 2010 4th int. symp commun. control and signal process, pp 1–4Google Scholar
  34. 34.
    Zeng W, Lei S (2003) Efficient frequency domain selective scrambling of digital video. IEEE Trans Multimed 5(1):118–129MathSciNetCrossRefGoogle Scholar
  35. 35.
    Zhang M, Tong X (2014) A new chaotic map based image encryption schemes for several image formatsmap based image encryption schemes for several image formats. J Syst Softw 98(0):140–154. doi:10.1016/j.jss.2014.08.066 CrossRefGoogle Scholar
  36. 36.
    Zhou J, Liu X, Au O, Tang YY (2014) Designing an efficient image encryption-then- compression system via prediction error clustering and random permutation. IEEE Trans Inf Forensics Secur 9(1):39–50CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Faculty of Computer Science and Information TechnologyUniversity of MalayaKuala LumpurMalaysia
  2. 2.Department of Computer ScienceUtah State UniversityLoganUSA
  3. 3.Faculty of EngineeringShinshu UniversityNaganoJapan

Personalised recommendations