Multimedia Tools and Applications

, Volume 76, Issue 3, pp 4179–4195 | Cite as

Region-based bit allocation and rate control for depth video in HEVC

  • Jianjun Lei
  • Zhenzhen Li
  • Tao Zhu
  • Xiaoxu He
  • Lei You
  • Chunping Hou
Article
  • 257 Downloads

Abstract

In this paper, we present a novel rate control method with optimized region-based bit allocation for depth video coding. First, a synthetic view distortion oriented segmentation method is proposed to divide depth video into different regions, including texture areas and smooth areas. Then, the expanded exponential distortion-rate (D-R) models and power quantization parameter-rate (QP-R) models are investigated to simulate rate-distortion (R-D) characteristics of different regions. Finally, an optimal bit allocation scheme is developed to adaptively allocate target bit with the division. Experimental results on various video sequences demonstrate that the proposed algorithm achieves excellent R-D efficiency and bit rate accuracy compared with benchmark algorithms.

Keywords

Bit allocation Rate control Depth video Video coding HEVC 

References

  1. 1.
    Alatan A A, Yemez Y, Güdükbay U, Zabulis X, Muller K, Erdem CE, Weigel C, Smolic A (2007) Scene representation technologies for 3DTV-A survey. IEEE Trans Circuits Syst Video Technol 17:1587– 1605CrossRefGoogle Scholar
  2. 2.
    Bjontegaard G (2001) Calculation of average PSNR differences between RD-Curves, Document VCEG-M33, ITU-T VCEG (ITU-T SG16 Q.6). AustinGoogle Scholar
  3. 3.
    Bossen F (2013) Common test conditions and software reference configurations. JCTVC-L1100, ISO/IEC JTC1/SC29/WG11. GenevaGoogle Scholar
  4. 4.
    Choi H, Nam J, Yoo J, Sim D, Bajic I V (2012) Rate control based on unified RQ model for HEVC, JCTVC-H0213, 8-th JCTVC meeting. San JoseGoogle Scholar
  5. 5.
    Hu S, Kwong S, Zhang Y, Kuo C-CJ (2013) Rate-distortion optimized rate control for depth map-based 3-D video coding. IEEE Trans Image Process 22:585–594MathSciNetCrossRefGoogle Scholar
  6. 6.
    HM reference software 16.6, [Online] Available: https://hevc.hhi.fraunhofer.de/svn/svn_HEVCSoftware/tags/HM-16.6
  7. 7.
    Lee B, Kim M, Nguyen TQ (2014) A frame-level rate control scheme based on texture and nontexture rate models for high efficiency video coding. IEEE Trans Circuits Syst Video Technol 24:465–479CrossRefGoogle Scholar
  8. 8.
    Lei J, Li S, Zhu C, Sun M-T, Hou C (2015) Depth coding based on depth-texture motion and structure similarities. IEEE Trans Circuits Syst Video Technol 25:275–286CrossRefGoogle Scholar
  9. 9.
    Li B, Li H, Li L (2013) Adaptive bit allocation for R-lambda model rate control in HM, JCTVC-M0036, 13th JCTVC Meeting. IncheonGoogle Scholar
  10. 10.
    Liu Y, Huang Q, Ma S, Zhao D, Gao W, Ci S, Tang H (2011) A novel rate control technique for multiview video plus depth based 3D video coding. IEEE Trans Broadcast 57:562–571CrossRefGoogle Scholar
  11. 11.
    Liu S, Lai P, Tian D, Chen C (2011) New depth coding techniques with utilization of corresponding video. IEEE Trans Broadcast 57:551–561CrossRefGoogle Scholar
  12. 12.
    Loghman M, Kim J (2015) Segmentation-based view synthesis for multi-view video plus depth. Multimed Tools Appl 74:1611–1625CrossRefGoogle Scholar
  13. 13.
    Lu K, He N, Xue J, Dong J, Shao L (2015) Learning view-model joint relevance for 3D object retrieval. IEEE Trans Image Process 24:1449–1459MathSciNetCrossRefGoogle Scholar
  14. 14.
    Min D, Lu J, Do M N (2012) Depth video enhancement based on weighted mode filtering. IEEE Trans Image Process 21:1176–1190MathSciNetCrossRefGoogle Scholar
  15. 15.
    Nguyen V-A, Min D, Do M N (2013) Efficient techniques for depth video compression using weighted mode filtering. IEEE Trans Circuits Syst Video Technol 23:189–202CrossRefGoogle Scholar
  16. 16.
    Oh B T, Lee J, Park D (2011) Depth map coding based on synthesized view distortion function. IEEE J Sel Topic Signal Process 5:1344–1352CrossRefGoogle Scholar
  17. 17.
    Oh K-J, Vetro A, Ho Y-S (2011) Depth coding using a boundary reconstruction filter for 3-D Video systems. IEEE Trans Circuits Syst Video Technol 21:350–359CrossRefGoogle Scholar
  18. 18.
    Shao F, Jiang G, Lin W, Yu M, Dai Q (2013) Joint bit allocation and rate control for coding multi-view video plus depth based 3D video. IEEE Trans Multimed 15:1843–1854CrossRefGoogle Scholar
  19. 19.
    Shao F, Lin W, Jiang G, Yu M, Dai Q (2014) Depth map coding for view synthesis based on distortion analyses. IEEE J Emerg Select Topics Circuits Syst 4:106–117CrossRefGoogle Scholar
  20. 20.
    Stefanoski N, Wang O, Lang M, Greisen P, Heinzle S, Smolic A (2013) Automatic view synthesis by image-domain-warping. IEEE Trans Image Process 22:3329–3341MathSciNetCrossRefGoogle Scholar
  21. 21.
    Sullivan G J, Ohm JR, Han WJ, Wiegand T, Smolic A (2012) Overview of the high efficiency video coding (HEVC) standard. IEEE Trans Circuits Syst Video Technol 22:1649–1668CrossRefGoogle Scholar
  22. 22.
    Yang J, Ding Z, Guo F, Wang H (2014) A multi-view image rectification algorithm for parallel camera arrays. J Electron Imag 23:118–122Google Scholar
  23. 23.
    Yuan H, Chang Y, Huo J, Yang F, Lu Z (2011) Model-based joint bit allocation between texture videos and depth maps for 3-D video coding. IEEE Trans Circuits Syst Video Technol 21:485–497CrossRefGoogle Scholar
  24. 24.
    Yuan H, Kwong S, Liu J, Sun J (2014) A novel distortion model and lagrangian multiplier for depth maps coding. IEEE Trans Circuits Syst Video Technol 24:443–451CrossRefGoogle Scholar
  25. 25.
    Zhang R, Chen Y, Karczewicz M (2012) Adaptive depth edge sharpening for 3D video depth coding. In: IEEE visual communications and image processing (VCIP). San Diego, pp 1–6Google Scholar
  26. 26.
    Zhang Y, Kwong S, Xu L, Hu S, Jiang G, Kuo C-C J (2013) Regional bit allocation and rate distortion optimization for multiview depth video coding with view synthesis distortion model. IEEE Trans Image Process 22:3497–3512CrossRefGoogle Scholar
  27. 27.
    Zhao Y, Zhu C, Chen Z, Yu L (2011) Depth no-synthesis-error model for view synthesis in 3-D video. IEEE Trans Image Process 20:2221–2228MathSciNetCrossRefGoogle Scholar
  28. 28.
    Zhu C, Zhao Y, Yu L, Tanimoto M (eds) (2013) 3D-TV system with depth-image-based rendering: architecture, techniques and challenges. Springer, USAGoogle Scholar
  29. 29.
    3DV/FTV EE2: Report on VSRS Extrapolation, JTC1/SC29/WG11, ISO/IEC, Guangzhou, China (2010)Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Jianjun Lei
    • 1
  • Zhenzhen Li
    • 1
  • Tao Zhu
    • 1
  • Xiaoxu He
    • 1
  • Lei You
    • 1
  • Chunping Hou
    • 1
  1. 1.School of Electronic Information EngineeringTianjin UniversityTianjinChina

Personalised recommendations