Multimedia Tools and Applications

, Volume 76, Issue 5, pp 7445–7471 | Cite as

Keyless dynamic optimal multi-bit image steganography using energetic pixels

  • Goutam Paul
  • Ian Davidson
  • Imon Mukherjee
  • S. S. Ravi
Article

Abstract

Steganography plays an important role to hide data in apparently innocuous media (e.g., image, audio, video, text, etc.). Since most of the steganographic algorithms do not consider the image content while locating the message bearing pixels, in most occasions, they are bound to defeat against visual, structural and statistical attacks. We distribute the message bits in selective parts of a cover image, particularly in the ‘busy’ part, i.e., where a perceptible change in the pixel intensity occurs, using a variety of embedding schemes. The energetic pixels, as per our definition, capture this notion of ‘busy’ part of the image and our data hiding schemes keep the energy function invariant between the cover image and its stego version for lossless data extraction. The schemes do not need to share any key/seed or a pass-phrase between the sender and the receiver. We show that our proposed algorithms provide imperceptible visual distortions for embedding data at most 4 bits per pixels with high embedding efficiencies and can withstand popular first order statistical tests.

Keywords

Energetic pixels Data hiding Embedding capacity Ising energy Multibit steganography 

References

  1. 1.
    Bas P, Filler T, Pevny T (2011) Break our steganographic system, the ins and outs of organizing BOSS. Lecture notes in computer science, vol 6958/2011. Information Hiding, Czech Republic, pp 59–70Google Scholar
  2. 2.
    Cheddad A, Condell J, Curran K, Mc Kevitt P (2010) Digital image steganography: survey and analysis of current methods. Signal Process 90(3):727–752CrossRefMATHGoogle Scholar
  3. 3.
    Cipra B (1987) An introduction to the Ising model. Am Math Mon 94(10):937–959MathSciNetCrossRefGoogle Scholar
  4. 4.
    Coremen T, Leiserson C, Rivest R, Stein C (2001) Introduction to algorithm, 2nd edn. McGraw HillGoogle Scholar
  5. 5.
    Das SK, Dhara BC (2015) A new secret image sharing with arithmetic coding. In: Proceedings of 2015 IEEE international conference on research in computational intelligence and networks, Kolkata, pp 395–399Google Scholar
  6. 6.
    Dagar E, Dagar S (2014) LSB based image steganography using x-box mapping. In: IEEE international conference on advances in computing, communications and informatics (ICACCI), New Delhi , pp 24–27Google Scholar
  7. 7.
    Deshmukh PU, Pattewar TM (2014) A novel approach for edge adaptive steganography on LSB insertion technique. In: IEEE international conference on information communication and embedded systems (ICICES), Chennai, pp 27–28Google Scholar
  8. 8.
    Dumitrescu S, Wu X, Memon N (2002) On steganalysis of random LSB embedding in continuous-tone images. In: IEEE ICIP 2002, vol III. (September, New York, pp 641–644Google Scholar
  9. 9.
    Feng B, Lu W, Sun W (2015) Secure binary image steganography based on minimizing the distortion on the texture. IEEE Trans Inf Forensics Secur 10(2):243–255CrossRefGoogle Scholar
  10. 10.
    Filler T, Fridrich J (2010) Gibbs construction in steganography. IEEE Trans Inf Forensics Secur 5(4):705–720CrossRefGoogle Scholar
  11. 11.
    Fridrich J, Goljan M, Dui R (2001) Reliable detection of LSB steganography in color and grayscale images. In: Proceedings of the ACM workshop on multimedia and security, Ottawa, pp 27–30Google Scholar
  12. 12.
    Fridrich J, Lisonek P (2007) Grid colorings in steganography. IEEE Trans Inf Theory 53(4):1547–1549MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Fridrich J, Lisonek P, Soukal D (2008) On steganographic embedding efficiency, information hiding. In: 8th international workshop, vol 4437, Alexandria, pp 282–296Google Scholar
  14. 14.
    Fridrich J, Kodovsky J (2012) Rich models for steganalysis of digital images. IEEE Trans Inf Forensics Secur 7(3):868–882CrossRefGoogle Scholar
  15. 15.
    Hajizadeh M, Helfroush MS, Dehghani MJ, Tashk A (2010) A robust blind image watermarking method using local maximum amplitude wavelet coefficient quantization. Adv Electr Comput Eng 10(3):96–101CrossRefGoogle Scholar
  16. 16.
    Jain AK (1989) Fundamentals of digital image processing. Prentice HallGoogle Scholar
  17. 17.
    Johnson NF, Jajodia S (1998) Steganalysis of images using current steganography software. In: Proceedings of the 2nd international workshop on information hiding, pp 273–289Google Scholar
  18. 18.
    Luo W, Huang F, Huang J (2010) Edge adaptive image steganography based on LSB matching revisited. IEEE Trans Inf Forensics Secur 5(2):201–214CrossRefGoogle Scholar
  19. 19.
    Mandal JK, Das D (2012) Colour image steganography based on pixel value differencing in spatial domain. Int J Inf Sci Tech (IJIST) 2(4)Google Scholar
  20. 20.
    Mukherjee I, Paul G (2013) Efficient multi-bit image steganography in spatial domain. In: Bagchi A et al (eds) Chapter 21. ISBN: 978-3-642-45203-1, vol 8303. LNCS, Springer, pp 270–284Google Scholar
  21. 21.
    Nakatani H (1992) Boundary value problem of image modification. Opt Eng 31:280–286CrossRefGoogle Scholar
  22. 22.
    Oskoei MA, Hu H (2010) A survey on edge detection methods, technical report: CES-506, School of Computer Science & Electronic Engineering, University of Essex, U.K.Google Scholar
  23. 23.
    Park Y, Kang H, Shin S, Kwon K (2005) An image steganography using pixel characteristics. In: International conference on computational intelligence and security (CIS 2005). Lecture Notes in Computer Science, vol 3802. Springer, pp 581–588Google Scholar
  24. 24.
    Paul G, Davidson I, Mukherjee I, Ravi SS (2012) Keyless steganography in spatial domain using energetic pixels. In: Venkatakrishnan V et al (eds) Proceedings of the 8th international conference on information systems security (ICISS). ISBN: 978-3-642-35129-7, vol 7671. LNCS, Springer, Guwahati, pp 134–148Google Scholar
  25. 25.
    Provos N (2001) Defending against statistical steganalysis. In: 10th USENIX security symposium, pp 325–335Google Scholar
  26. 26.
    Rai S, Dubey R (2012) A novel keyless algorithm for steganography. In: 2012 students conference on engineering and systems (SCES), pp 1–4. doi:10.1109/SCES.2012.6199069
  27. 27.
    Shamir A (1979) How to share a secret. Commun ACM 22(11):612–613MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Steganography Software Archive., http://www.jjtc.com/Steganography/tools.html
  29. 29.
    Tanaka H, Tamura S, Tanaka S (1977) On assembling subimages into a mosaic image. IEEE Trans Syst Man Cybern SMC-7:42–48Google Scholar
  30. 30.
    Tashk A, Danyali H, Alavianmehr MA (2012) A modified dual watermarking scheme for digital images with tamper localization/detection and recovery capabilitiesGoogle Scholar
  31. 31.
    The Gifshuffle Home Page., http://www.darkside.com.au/gifshuffle
  32. 32.
    Wayner P (2002) Disappearing cryptography - information hiding, steganography & watermarking, 2nd edn. Morgan Kaufmann Publishers. ISBN: 1-55860-769-2Google Scholar
  33. 33.
    Westfeld A, Pfitzmann A (1999) Attacks on steganographic systems. In: Proceedings the 3rd international workshop on information hiding, LNCS 1768. Springer-Verlag, pp 61–76Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Goutam Paul
    • 1
  • Ian Davidson
    • 2
  • Imon Mukherjee
    • 3
  • S. S. Ravi
    • 4
  1. 1.Cryptology and Security Research Unit (CSRU), R. C. Bose Centre for Cryptology and SecurityIndian Statistical InstituteKolkataIndia
  2. 2.Department of Computer ScienceUniversity of CaliforniaDavisUSA
  3. 3.Department of Computer Science & EngineeringSt. Thomas’ College of Engineering & TechnologyKolkataIndia
  4. 4.Department of Computer ScienceUniversity at AlbanySunyUSA

Personalised recommendations