Multimedia Tools and Applications

, Volume 76, Issue 5, pp 6247–6261 | Cite as

Design of a new efficient and secure multi-secret images sharing scheme

Article

Abstract

We propose a new (n,n) multi-secret images sharing scheme that provides high level of provable security with fast sharing and reconstruction procedures. It uses simple Boolean operations conjointly with a secure stream cipher and a cryptographic hash function in order to enable an efficient sharing of n secret images among a set of n different participants. This approach overcomes the security weakness detected in existing similar schemes, and provides additional advantages such as high sensitivity to alterations and ability to share heterogeneous images having diverse resolutions. Obtained experimental results show the effectiveness and robustness of the method compared to existing schemes, particularly its ability to ensure higher security level with competitive computational performances.

Keywords

Multi-secrets sharing Images sharing Cryptographic construction Provable security 

References

  1. 1.
    Bernstein DJ (2008) The Salsa20 family of stream ciphers. In New stream cipher designs (pp. 84–97). Springer Berlin HeidelbergGoogle Scholar
  2. 2.
    Chang CC, Chuang JC, Lin PY (2005) Sharing a secret two-tone image in two gray-level images. In Parallel and Distributed Systems, 2005. Proceedings. 11th International Conference on IEEE 2:300–304)Google Scholar
  3. 3.
    Chang CC, Huynh NT, Le HD (2014) Lossless and unlimited multi-image sharing based on Chinese remainder theorem and Lagrange interpolation. Signal Process 99:159–170CrossRefGoogle Scholar
  4. 4.
    Chen CC, Chang CC (2007) Secret image sharing using quadratic residues. In Intelligent Information Hiding and Multimedia Signal Processing, 2007. IIHMSP 2007. Third International Conference on IEEE 1:515–518Google Scholar
  5. 5.
    Chen CC, Chien YW (2008) Sharing numerous images secretly with reduced possessing load. Fundam Inf 86(4):447–458MathSciNetMATHGoogle Scholar
  6. 6.
    Chen CC, Fu WY, Chen CC (2008) A geometry-based secret image sharing approach. J Inf Sci Eng 24(5):1567–1577MathSciNetGoogle Scholar
  7. 7.
    Chen TH, Wu CS (2011) Efficient multi-secret image sharing based on Boolean operations. Signal Process 91:90–97CrossRefMATHGoogle Scholar
  8. 8.
    Chen CC, Wu WJ (2014) A secure Boolean-based multi-secret image sharing scheme. J Syst Softw 92:107–114CrossRefGoogle Scholar
  9. 9.
    Dai W (2009) Crypto++ 5.6. 0 benchmarks. Website at http://www.cryptopp.com/benchmarks.html
  10. 10.
    Feng JB, Wu HC, Tsai CS, Chang YF, Chu YP (2008) Visual secret sharing for multiple secrets. Pattern Recogn 41(12):3572–3581CrossRefMATHGoogle Scholar
  11. 11.
    Fips N (2001) 180–2: Secure hash standard (SHS). Technical report, National Institute of Standards and Technology (NIST), 2001. http://csrc.nist.gov/publications/fips/fips180-2/fips180-2withchangenotice.pdf
  12. 12.
    Guo C, Chang CC, Qin C (2012) A hierarchical threshold secret image sharing. Pattern Recognit Lett 33:83–91CrossRefGoogle Scholar
  13. 13.
    Horng G, Chen T, Tsai DS (2006) Cheating in visual cryptography. Des Codes Crypt 38(2):219–236MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Jin J, Wu ZH (2012) A secret image sharing based on neighborhood configurations of 2-D cellular automata. Opt Lasers Technol 44(3):538–548CrossRefGoogle Scholar
  15. 15.
    Lin SJ, Chen SK, Lin JC (2010) Flip visual cryptography (FVC) with perfect security, conditionally-optimal contrast, and no expansion. J Vis Commun Image Represent 21:900–916CrossRefGoogle Scholar
  16. 16.
    Lin PY, Lee JS, Chang CC (2009) Distortion-free secret image sharing mechanism using modulus operator. Pattern Recogn 42(5):886–895CrossRefMATHGoogle Scholar
  17. 17.
    Shyu SJ, Chen YR (2008) Threshold secret image sharing by Chinese remainder theorem. In Asia-Pacific Services Computing Conference, 2008. APSCC’08. IEEE 1332–1337Google Scholar
  18. 18.
    Shyu SJ, Huang SY, Lee YK, Wang RZ, Chen K (2007) Sharing multiple secrets in visual cryptography. Pattern Recognit 40:3633–3651CrossRefMATHGoogle Scholar
  19. 19.
    Shyu SJ, Huang SY, Lee YK, Wang RZ, Chen K (2007) Sharing multiple secrets in visual cryptography. Pattern Recognit 40(12):3633–3651CrossRefMATHGoogle Scholar
  20. 20.
    Thien CC, Lin JC (2002) Secret image sharing. Comput Graph 26(5):765–770CrossRefGoogle Scholar
  21. 21.
    Tsai DS, Chen TH, Horng G (2007) A cheating prevention scheme for binary visual cryptography with homogeneous secret images. Pattern Recognit 40(8):2356–2366CrossRefMATHGoogle Scholar
  22. 22.
    Tso HK (2008) Sharing secret images using Blakley’s concept. Opt Eng 47(7):077001–077001CrossRefGoogle Scholar
  23. 23.
    Ulutas M, Ulutas G, Nabiyev V (2013) Invertible secret image sharing for gray-level and dithered cover images. J Syst Softw 86(2):485–500CrossRefGoogle Scholar
  24. 24.
    Wang D, Zhang L, Ma N, Li X (2007) Two secret sharing schemes based on Boolean operations. Pattern Recognit 40(10):2776–2785CrossRefMATHGoogle Scholar
  25. 25.
    Wu HC, Chang CC (2005) Sharing visual multi-secrets using circle shares. Comput Stand Interfaces 28:123–135CrossRefGoogle Scholar
  26. 26.
    Yang CN, Chen TS (2006) Reduce shadow size in aspect ratio invariant visual secret sharing schemes using a square block-wise operation. Pattern Recognit 39(7):1300–1314CrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Computer Science DepartmentDjilalli Liabbes UniversitySidi Bel AbbèsAlgeria

Personalised recommendations