Multimedia Tools and Applications

, Volume 76, Issue 5, pp 6209–6228 | Cite as

Salient object detection via saliency bias and diffusion

Article

Abstract

Salient object detection aims to identify both spatial locations and scales of the salient object in an image. However, previous saliency detection methods generally fail in detecting the whole objects, especially when the salient objects are actually composed of heterogeneous parts. In this work, we propose a saliency bias and diffusion method to effectively detect the complete spatial support of salient objects. We first introduce a novel saliency-aware feature to bias the objectness detection for saliency detection on a given image and incorporate the saliency clues explicitly in refining the saliency map. Then, we propose a saliency diffusion method to fuse the saliency confidences of different parts from the same object for discovering the whole salient object, which uses the learned visual similarities among object regions to propagate the saliency values across them. Benefiting from such bias and diffusion strategy, the performance of salient object detection is significantly improved, as shown in the comprehensive experimental evaluations on four benchmark data sets, including MSRA-1000, SOD, SED, and THUS-10000.

Keywords

Salient object detection Saliency bias Saliency diffusion Region pairwise similarity 

References

  1. 1.
    Achanta R, Estrada F, Wils P, Süsstrunk S (2008) Salient region detection and segmentation. In: Proc. of International Conference on Computer Vision Systems, pp. 66–75Google Scholar
  2. 2.
    Achanta R, Hemami S, Estrada F, Süsstrunk S (2009) Frequency-tuned salient region detection. In: Proc. of IEEE Conference on Computer Vision and Pattern Recognition, pp. 1597–1604Google Scholar
  3. 3.
    Achanta R, Shaji A, Smith K, Lucchi A, Fua P, Süusstrunk S (2012) SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Trans Pattern Anal Mach Intell 34(11):2274–2282CrossRefGoogle Scholar
  4. 4.
    Al-Azawi M, Yang Y, Istance H (2014) Irregularity-based image regions saliency identification and evaluation. Multi Tools Appl:1–24Google Scholar
  5. 5.
    Alexe B, Deselaers T, Ferrari V (2012) Measuring the objectness of image windows. IEEE Trans Pattern Anal Mach Intell 34(11):2189–2202CrossRefGoogle Scholar
  6. 6.
    Alpert S, Galun M, Basri R, Brandt A (2007) Image segmentation by probabilistic bottom-up aggregation and cue integrationGoogle Scholar
  7. 7.
    Avidan S, Shamir A (2007) Seam carving for content-aware image resizing. ACM Trans Graph 26(3)Google Scholar
  8. 8.
    Bao L, Zhang X, Zheng Y, Li Y (2015) Video saliency detection using 3D shearlet transform. Mult Tools Appl:1–18Google Scholar
  9. 9.
    Borji A, Sihite DN, Detection L. Itti. (2012) Salient object A benchmark. In: Proc. of European Conference on Computer Vision, pp. 414–429Google Scholar
  10. 10.
    Bruce N, Tsotsos J (2005) Saliency based on information maximization. In: Proc. of Advances in Neural Information Processing Systems, pp. 155–162Google Scholar
  11. 11.
    Chen L, Xie X, Fan X, Ma W, Zhang H, Zhou H (2002) A visual attention model for adapting images on small displays. Technical report, Microsoft Research RedmondGoogle Scholar
  12. 12.
    Cheng MM, Zhang GX, Mitra NJ, Huang X, Hu SM (2011) Global contrast based salient region detection. In: Proc. of IEEE Conference on Computer Vision and Pattern Recognition, pp. 409–416Google Scholar
  13. 13.
    Cheng MM, Warrell J, Lin WY, Zheng S, Vineet V, Crook N (2013) Efficient salient region detection with soft image abstraction. In: Proc. of IEEE International Conference on Computer Vision, pp. 1529–1536Google Scholar
  14. 14.
    Dalal N, Triggs B (2005) Histograms of oriented gradients for human detection. In: Proc. of IEEE Conference on Computer Vision and Pattern Recognition, pp. 886–893Google Scholar
  15. 15.
    Desai C, Ramanan D, Fowlkes CC (2009) Discriminative models for multi-class object layout. In: Proc. of IEEE International Conference on Computer Vision, pp. 1–12Google Scholar
  16. 16.
    Ding M, Tong RF (2010) Content-aware copying and pasting in images. Vis Comput 26(6-8):721–729CrossRefGoogle Scholar
  17. 17.
    Duan L, Wu C, Miao J, Qing L, Fu Y (2011) Visual saliency detection by spatially weighted dissimilarity. In: Proc. of IEEE Conference on Computer Vision and Pattern Recognition, pp. 473–480Google Scholar
  18. 18.
    Elazary L, Itti L (2008) Interesting objects are visually salient. J Vis 8(3):3CrossRefGoogle Scholar
  19. 19.
    Endres I, Hoiem D (2014) Category-independent object proposals with diverse ranking. IEEE Trans Pattern Anal Mach Intell 36(2):222–234CrossRefGoogle Scholar
  20. 20.
    Felzenszwalb PF, Huttenlocher DP (2004) Efficient graph-based image segmentation. Int J Comput Vis 59(2):167–181CrossRefGoogle Scholar
  21. 21.
    Felzenszwalb PF, Girshick RB, McAllester D, Ramanan D (2010) Object detection with discriminatively trained part-based models. IEEE Trans Pattern Anal Mach Intell 32(9):1627–1645CrossRefGoogle Scholar
  22. 22.
    Hoiem D, Efros AA, Hebert M (2007) Recovering surface layout from an image. Int J Comput Vis 75(1):151–172CrossRefMATHGoogle Scholar
  23. 23.
    Hou X, Zhang L (2007) Saliency detection: A spectral residual approach. In: Proc. of IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8Google Scholar
  24. 24.
    Hou X, Zhang L (2008) Dynamic visual attention: searching for coding length increments. In: Proc. of Advances in Neural Information Processing Systems, pp. 681–688Google Scholar
  25. 25.
    Hoiem D, Efros A A, Hebert M (2011) Recovering occlusion boundaries from an image. Int J Comput Vis 91(3):328–346MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Itti L, Koch C, Niebur E, et al. (1998) A model of saliency-based visual attention for rapid scene analysis. IEEE Trans Pattern Anal Mach Intell 20(11):1254–1259CrossRefGoogle Scholar
  27. 27.
    Jiang H, Wang J, Yuan Z, Wu Y, Zheng N, Li S (2013) Salient object detection: A discriminative regional feature integration approach. In: Proc. of IEEE Conference on Computer Vision and Pattern Recognition, pp. 2083–2090Google Scholar
  28. 28.
    Judd T, Ehinger K, Durand F, Torralba A (2009) Learning to predict where humans look. In: Proc. of IEEE International Conference on Computer Vision, pp. 2106–2113Google Scholar
  29. 29.
    Kanan C, Cottrell G (2010) Robust classification of objects, faces, and flowers using natural image statistics. In: Proc. of IEEE Conference on Computer Vision and Pattern Recognition, pp. 2472–2479Google Scholar
  30. 30.
    Koch C, Ullman S (1985) Shifts in selective visual attention: towards the underlying neural circuitry. Hum Neurobiol 4(4):219–227Google Scholar
  31. 31.
    Leung T, Malik J (2001) Representing and recognizing the visual appearance of materials using three-dimensional textons. Int J Comput Vis 43(1):29–44CrossRefMATHGoogle Scholar
  32. 32.
    Liu H, Jiang S, Huang Q, et al. (2007) Region-based visual attention analysis with its application in image browsing on small displays. Proceedings of the 15th international conference on MultimediaGoogle Scholar
  33. 33.
    Liu T, Yuan Z, Sun J, Wang J, Zheng N, Tang X, Shum H. -Y. (2011) Learning to detect a salient object. IEEE Trans Pattern Anal Mach Intell 33 (2):353–367CrossRefGoogle Scholar
  34. 34.
    Ma YF, Zhang HJ (2003) Contrast-based image attention analysis by using fuzzy growing. In: Proc. of ACM International Conference on Multimedia, pp. 374–381Google Scholar
  35. 35.
    Margolin R, Tal A, Zelnik-Manor L (2013) What makes a patch distinct?. In: Proc. of IEEE Conference on Computer Vision and Pattern Recognition, pp. 1139–1146Google Scholar
  36. 36.
    Martin DR, Fowlkes CC, Malik J (2004) Learning to detect natural image boundaries using local brightness, color, and texture cues. IEEE Trans Pattern Anal Mach Intell 26(5):530–549CrossRefGoogle Scholar
  37. 37.
    Movahedi V, Elder JH (2010) Design and perceptual validation of performance measures for salient object segmentation. In: Proc. of IEEE Conference on Computer Vision and Pattern Recognition, pp. 49–56Google Scholar
  38. 38.
    Perazzi F, Krahenbuhl P, Pritch Y, Hornung A (2012) Saliency filters: Contrast based filtering for salient region detection. In: Proc. of IEEE Conference on Computer Vision and Pattern Recognition, pp 733–740Google Scholar
  39. 39.
    Shen X, Wu Y (2012) A unified approach to salient object detection via low rank matrix recovery. In: Proc. of IEEE Conference on Computer Vision and Pattern Recognition, pp. 853–860Google Scholar
  40. 40.
    Wei Y, Wen F, Zhu W, Sun J (2012) Geodesic saliency using back-ground priors. In: Proc. of European Conference on Computer Vision, pp. 29–42Google Scholar
  41. 41.
    Wu B, Xu L (2014) Integrating bottom-up and top-down visual stimulus for saliency detection in news video. Multi Tools Appl 73(3):1053–1075CrossRefGoogle Scholar
  42. 42.
    Yang C, Zhang L, Lu H, Ruan X, Yang MH (2013) Saliency detection via graph-based manifold ranking. In: Proc. of IEEE Conference on Computer Vision and Pattern Recognition, pp. 3166–3173Google Scholar
  43. 43.
    Zhu W, Liang S, Wei Y, Sun J (2013) Saliency optimization from robust background detection. In: Proc. of IEEE Conference on Computer Vision and Pattern Recognition, pp. 2814–2821Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of AutomationUniversity of Science and Technology of China (USTC)HefeiChina

Personalised recommendations