Multimedia Tools and Applications

, Volume 76, Issue 5, pp 6281–6307 | Cite as

A multimedia system to produce and deliver video fragments on demand on parliamentary websites

  • Elena Sánchez-Nielsen
  • Francisco Chávez-Gutiérrez
  • Javier Lorenzo-Navarro
  • Modesto Castrillón-Santana
Article

Abstract

Parliamentary websites have become one of the most important windows for citizens and media to follow the activities of their legislatures and to hold parliaments to account. Therefore, most parliamentary institutions aim to provide new multimedia solutions capable of displaying video fragments on demand on plenary activities. This paper presents a multimedia system for parliamentary institutions to produce video fragments on demand through a website with linked information and public feedback that helps to explain the content shown in these fragments. A prototype implementation has been developed for the Canary Islands Parliament (Spain) and shows how traditional parliamentary streaming systems can be enhanced by the use of semantics and computer vision for video analytics. The semantic web technologies used make search capabilities on parliamentary websites available to users to retrieve video fragments on demand with accurate and timely information. In addition, video analytic techniques enable the automation of identifying representative keyframes to be annotated by parliamentary experts. As a result, parliaments are able to enhance citizens’ access to information and ensure that these institutions are more open and accountable on their websites and; at the same time, the labor-intensive tasks of parliamentary experts are considerably reduced.

Keywords

Multimedia system Video fragments on demand Semantic web technologies Video analytics Person re-identification 

References

  1. 1.
    Abdallah S, Raimond Y (2007) The timeline ontology. http://purl.org/NET/c4dm/timeline.owl#. Accessed May 2015
  2. 2.
    Ahonen T, Hadid A, Pietikainen M (2006) Face description with local binary patterns: application to face recognition. IEEE Trans Pattern Anal Mach Intell 28(12):2037–2041CrossRefMATHGoogle Scholar
  3. 3.
    Barra-Chicote R, Pardo J, Ferreiros J, Montero J (2011) Speaker diarization based on intensity channel contribution. IEEE Trans Audio Speech Lang Process 19(4):754–761CrossRefGoogle Scholar
  4. 4.
    Berners-Lee T, Hendler J, Lassila O (2001) The semantic web. Sci Am Mag 284(5):28–37CrossRefGoogle Scholar
  5. 5.
    Berners-Lee T (2006) Linked data. Int J Semant Web Inf Syst 4(2):1–72Google Scholar
  6. 6.
    Bertot J, Jaeger P, Grimes M (2010) Using ICTs to create a culture of transparency: e-government and social media as openness and anti-corruption tools for societies. Gov Inf Q 27:264–271CrossRefGoogle Scholar
  7. 7.
    Bixtext API (2014) http://www.bitext.com/. Accessed May 2015
  8. 8.
    Bizer C, Heath T, Berners-Lee T (2009) Linked data—the story so far. Int J Semant Web Inf Syst 5(3):1–22CrossRefGoogle Scholar
  9. 9.
    Breslin G, Harth A, Bojars U, Decker S (2005) Towards semantically-interlinked online communities. In 2nd European Semantic Web Conference (ESWC 2005) 500–514Google Scholar
  10. 10.
    Brickley D, Miller L (2014) FOAF vocabulary specification 0.99. Namespace Document 14 January 2014 – Paddington Edition, FOAF Project. http://xmlns.com/foaf/spec/. Accessed May 2015
  11. 11.
    Bulterman D, Grassel G, Jansen J, Koivisto A, Layaida N, Michel T, Mullender S, Zucker D (ed) (2005) Synchronized multimedia integration language (SMIL 2.1). W3C recommendation. World Wide WebGoogle Scholar
  12. 12.
    Cheng D, Cristani M, Stoppa M, Bazzani L, Murino V (2011) Custom pictorial structures for re-identification. Br Mach Vis Conf, DundeeCrossRefGoogle Scholar
  13. 13.
    Castrillón Santana M, Déniz O, Hernández, D, Lorenzo JA (2011) Comparison of face and facial feature detectors based on the Viola-Jones general object detection framework. Mach Vis Appl 22(3)Google Scholar
  14. 14.
    Cong Truong D, Khoudour L, Achard C, Meurie C, Lezoray O (2010) People re-identification by spectral classification of silhouettes. Sig Process 90:2362–2374. doi:10.1016/j.sigpro.2009.09.005 CrossRefMATHGoogle Scholar
  15. 15.
    Cover M, Thomas A (2006) Elements of information theory. Wiley InterscienceGoogle Scholar
  16. 16.
    Bpedia D (2014) The DBpedia Ontology 3.9. http://wiki.dbpedia.org/Ontology. Accessed May 2015
  17. 17.
    Déniz O, Bueno G, Salido J, Torre D (2011) Face recognition using histograms of oriented gradients. Pattern Recogn Lett 32(12):1598–1603CrossRefGoogle Scholar
  18. 18.
    Dublin Core Metadata Innovation (2006) DCMI term declarations represented in RDF schema languageGoogle Scholar
  19. 19.
    EBU/ETSI (2008) ETSI TS 102 822-3-1: TV-anytime. http://www.tv-anytime.org/. Accessed May 2015
  20. 20.
    Eurovoc (2014) EU’s multilingual thesaurus. http://eurovoc.europa.eu/drupal/. Accessed May 2015
  21. 21.
    Global Centre for ICT in Parliament United Nations Department of Economic and Social Affairs (2012) World e-Parliament Report 2012. In: Inter-Parliamentary Union Press, by the Division for Public Administration and Development Management of the United NationsGoogle Scholar
  22. 22.
    Gray D, Tao H (2008) Viewpoint invariant pedestrian recognition with ensemble of localized features. Proc. European Conference on Computer Vision (ECCV 2008)Google Scholar
  23. 23.
    Hausenblas M, Troncy R, Burguer T, Raimond Y (2009) Interlinking multimedia: how to apply linked data principles to multimedia fragments. LDOW2009, MadridGoogle Scholar
  24. 24.
    Hausenblas M, Karnstedt, M (2010) Understanding linked open data as a web-scale database. In Proc. Second Int’l Conf. Advances in Databases Knowledge and Data Applications (DBKDA) 56–61Google Scholar
  25. 25.
    Inter- Parliamentary Union (IPU) (2009) Guidelines for the content and structure of parliamentary web sites. In: Inter-Parliamentary Union Press, United NationsGoogle Scholar
  26. 26.
    ISO/IEC (2002) Information technology- multimedia content description interface. ISO/IEC 15938–1Google Scholar
  27. 27.
    ISO/IEC (2006) Information technology-MPEG-21, part17: fragment identification of MPEG resources. ISO/IEC 21000–17Google Scholar
  28. 28.
    Knox M, Friendland G (2010) Using oriented optical flow histograms for multimodal speaker diarization. Proceedings of ISCA Interspeech, Makuhari, pp 290–293Google Scholar
  29. 29.
    Kontopoulos E, Berberidis C, Dergiades T, Bassiliades N (2013) Ontology-based sentiment analysis of twitter posts. J Expert Syst Appl. doi:10.1016/j.eswa.2013.01.001 Google Scholar
  30. 30.
    Kumar N, Berg A, Belhumeur P, Nayar S (2011) Describable visual attributes for face verification and image search. IEEE Trans Pattern Anal Mach Intell (PAMI) 33(10):1962–1977CrossRefGoogle Scholar
  31. 31.
    Lefevre S, Vincent N (2007) Efficient and robust shot detection. J Real-Time Image Proc e:23–34Google Scholar
  32. 32.
    Li Y, Wald M, Wills G (2011) Interlinking multimedia annotations. ACM Web Science Conference 2011, KoblenzGoogle Scholar
  33. 33.
    Li Y, Wald M, Wills G (2012) Applying linked data in multimedia annotations. Int J Semant Comput 6(3):203–237CrossRefGoogle Scholar
  34. 34.
    Lorenzo-Navarro J, Castrillón-Santana M, Freire-Obregón, Ramón-Balmaseda E (2015) Stripe based clothes segmentation, Workshop on Video Analytics for Audience Measurement (VAAM15)Google Scholar
  35. 35.
    Mannens E, Derusen D, Troncy R, Pfeiffer S, Parker C, Lafon Y, Jansen J, Haunsenblas M, Vand de Wall R (2012) A URI-based approach for addressing fragments of media resources on the Web. Multimedia Tools Appl J 59:691–715. doi:10.1007/s11042-010-0683-z, Springer-VerlagCrossRefGoogle Scholar
  36. 36.
    Miró X, Bozonnet S, Evans N, Fredouille C, Friendland G (2012) Speaker diarization: a review of recent research. IEEE Trans Audio Speech Lang Process 20(2):356–370CrossRefGoogle Scholar
  37. 37.
    OpenLink Software (2014) Virtuoso Universal Server. http://virtuoso.openlinksw.com/. Accessed May 2015
  38. 38.
    Saif H, He Y, Alani H (2012) Alleviating data sparsity for twitter sentiment analysis. In 2nd Workshop on making sense of microposts (#MSM2012): Big things come in small packages at World Wide Web (WWW2012) 2–9Google Scholar
  39. 39.
    Schandl B, Haslhofer B, Burger T, Langegger A, Halb W (2012) Linked data and multimedia: the state of affairs. Multimedia Tools Appl J 59:523–556. doi:10.1007/s11042-011-0762-9, Springer-VerlagCrossRefGoogle Scholar
  40. 40.
    Sikora T (2001) The MPEG-7 visual standard for content description—an overview. IEEE Trans Circuits Syst Video Technol 11(6):696–702CrossRefGoogle Scholar
  41. 41.
    Stankovic M, Passant A, Laublet P (2009) Directing status messages to their audience in online communities, MALLOW2009Google Scholar
  42. 42.
    Studer R, Benjamins R, Fensel D (1998) Knowledge engineering: principles and methods. IEEE Trans Data Knowl Eng 25(1-2):161–197CrossRefMATHGoogle Scholar
  43. 43.
    Tapaswi, M, Bauml M, Stiefellhagen, R (2012) Knock! Knock! Who is it? Probabilistic person identification in TV series. Conference on Computer and Pattern Recognition (CVPR)Google Scholar
  44. 44.
    Twitter (2013) Using the twitter search API. https://dev.twitter.com/docs/using-search. Accessed May 2015
  45. 45.
    Vatant B, Wick M (2012) GeoNames ontology. http://www.geonames.org/ontology/documentation.html. Accessed May 2015
  46. 46.
    Vezzani R, Baltieri D, Cucchiara R (2013) People reidentification in surveillance and forensics: a survey. ACM Comput Surv 46(2):29. doi:10.1145/2543581.2543596 CrossRefGoogle Scholar
  47. 47.
    Vila M, Bardera A, Xu Q (2013) Tsallis entropy-based information measures for shot boundary detection and keyframe selection. SIViP 7(3):507–520CrossRefGoogle Scholar
  48. 48.
    Viola P, Jones M (2004) Robust real-time face detection. Int J Comput Vis 57(2):137–154CrossRefGoogle Scholar
  49. 49.
    W3C 2004 Web Ontology Language. http://www.w3.org/TR/owl-features/. Accessed May 2015
  50. 50.
    W3C (2008) Semantic Web Activity. SPARQL query language for RDF. http://www.w3.org/TR/rdf-sparql-query/. Accessed May 2015
  51. 51.
    W3C Media Fragments Working Group (2010) Media fragments working group. http://www.w3.org/2008/WebVideo/Fragments, Accessed May 2015
  52. 52.
    W3C (2012a) Media Fragments URI 1.0. http://www.w3.org/TR/media-frags/. Accessed May 2015
  53. 53.
    W3C (2012b) W3C Media Annotation Working Group. Ontology for Media Resources 1.0. http://www.w3.org/TR/mediaont-10/. Accessed May 2015
  54. 54.
    W3C (2014a) W3C Semantic Web. Activity Resource Description Framework 1.1 (RDF) http://www.w3.org/RDF/. Accessed May 2015
  55. 55.
    W3C (2014b) W3C Semantic Web activity. RDF Schema 1.1. http://www.w3.org/TR/rdf-schema/. Accessed May 2015
  56. 56.
    Wang T, Gong S, Zhu X, Wang S (2014) Person re-identification by video ranking. Proc. European Conference on Computer Vision (ECCV 2014)Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Elena Sánchez-Nielsen
    • 1
  • Francisco Chávez-Gutiérrez
    • 1
    • 2
  • Javier Lorenzo-Navarro
    • 3
  • Modesto Castrillón-Santana
    • 3
  1. 1.Departamento de Ingeniería Informática y de SistemasUniversidad de La LagunaSanta Cruz de TenerifeSpain
  2. 2.Parlamento de CanariasSanta Cruz de TenerifeSpain
  3. 3.SIANI – Universidad de Las Palmas de Gran CanariaGran CanariaSpain

Personalised recommendations