Multimedia Tools and Applications

, Volume 76, Issue 5, pp 7197–7212 | Cite as

Media trustworthiness verification and event assessment through an integrated framework: a case-study

  • Irene Amerini
  • Rudy Becarelli
  • Francesco Brancati
  • Roberto Caldelli
  • Gabriele Giunta
  • Massimiliano L. Itria
Article

Abstract

Nowadays, information is provided through diverse network channels and, above all, its diffusion occurs in an always faster and pervasive manner. Social Media (SM) plays a crucial role in distributing, in an uncontrolled way, news, opinions, media contents and so on, and can basically contribute to spread information that sometimes are untrue and misleading. An integrated assessment of the trustworthiness of the information that is delivered is claimed from different sides: the Secure! project strictly fits in such a context. The project has been studying and developing a service oriented infrastructure which, by resorting at diverse technological tools based on image forensics, source reputation analysis, Twitter message trend analysis, web source retrieval and crawling, and so on, provides an integrated event assessment especially regarding crisis management. The aim of this paper is to present an interesting case-study which demonstrates the potentiality of the developed system to achieve a new integrated knowledge.

Keywords

Complex event processing Crisis management Image forensics Trend analysis Social media Logo recognition 

References

  1. 1.
    Adi A, Etzion O (2004) Amit - the situation manager. VLDB J 13(2):177–203. doi:10.1007/s00778-003-0108-y CrossRefMATHGoogle Scholar
  2. 2.
    Aiello L, Petkos G, Martin C, Corney D, Papadopoulos S, Skraba R, Goker A, Kompatsiaris I, Jaimes A (2013) Sensing trending topics in twitter. IEEE Trans Multimedia 15(6):1268–1282. doi:10.1109/TMM.2013.2265080 CrossRefGoogle Scholar
  3. 3.
    Amerini I, Ballan L, Caldelli R, Del Bimbo A, Serra G (2011) A SIFT-based forensic method for copy move attack detection and transformation recovery. IEEE Trans Inf Forensics Secur 6(3):1099 –1110CrossRefGoogle Scholar
  4. 4.
    Amerini I, Ballan L, Caldelli R, Bimbo AD, Tongo LD, Serra G (2013) Copy-move forgery detection and localization by means of robust clustering with j-linkage. Signal Process Image Commun 28(6):659–669CrossRefGoogle Scholar
  5. 5.
    Amerini I, Becarelli R, Caldelli R, Casini M (2015) A feature-based forensic procedure for splicing forgeries detection Mathematical Problems in Engineering 2015. doi:10.1155/2015/653164
  6. 6.
    Boididou C, Papadopoulos S, Kompatsiaris Y, Schifferes S, Newman N (2014) Challenges of computational verification in social multimedia. In: Proceedings of the 23rd international conference on world wide web, WWW ’14 Companion. International World Wide Web Conferences Steering Committee, Republic and Canton of Geneva, Switzerland. doi:10.1145/2567948.2579323, pp 743–748
  7. 7.
    Derczynski L, Bontcheva K (2014) Pheme: veracity in digital social networks. In: Posters, demos, late-breaking results and workshop proceedings of the 22nd conference on user modeling, adaptation, and personalization co-located with the 22nd conference on user modeling, adaptation, and personalization (UMAP2014), Aalborg, Denmark, 7–11 July 2014Google Scholar
  8. 8.
    Derczynski L, Maynard D, Rizzo G, van Erp M, Gorrell G, Troncy R, Petrak J, Bontcheva K (2015) Analysis of named entity recognition and linking for tweets. Inf Process Manag 51(2):32–49. doi:10.1016/j.ipm.2014.10.006. http://www.sciencedirect.com/science/article/pii/S0306457314001034 CrossRefGoogle Scholar
  9. 9.
    Esper T, EsperTech I (2014) Esper Reference version 4.9.0. http://esper.codehaus.org
  10. 10.
    Etzion O, Niblett P (2011) Event processing in action. MANNINGGoogle Scholar
  11. 11.
    Fischler MA, Bolles RC (1981) Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. Commun ACM 24(6):381–395. doi:10.1145/358669.358692 MathSciNetCrossRefGoogle Scholar
  12. 12.
    Gupta A, Lamba H, Kumaraguru P, Joshi A (2013) Faking sandy: characterizing and identifying fake images on twitter during hurricane sandy. In: Proceedings of the 22nd international conference on world wide web, WWW ’13 companion. International World Wide Web Conferences Steering Committee, Republic and Canton of Geneva, Switzerland, pp 729–736Google Scholar
  13. 13.
    Itria ML, Ceccarelli AD (2014) A complex event processing approach for crisis-management systems. In: EDCC workshop big4CIPGoogle Scholar
  14. 14.
    Jøsang A, Roslan I (2002) The beta reputation system. In: Proceedings of the 15th bled electronic commerce conferenceGoogle Scholar
  15. 15.
    Kumar S, Morstatter F, Liu H (2014) Twitter data analytics. Springer, Berlin Heidelberg New YorkCrossRefGoogle Scholar
  16. 16.
    Lowe DG (2004) Distinctive image features from scale-invariant keypoints. Int J Comput Vis 60(2):91–110CrossRefGoogle Scholar
  17. 17.
    Mao Z, Li N, Winsborough W. (2006) Distributed credential chain discovery in trust management with parameterized roles and constraints, vol 4307, pp 159–173Google Scholar
  18. 18.
    Mathioudakis M, Koudas N (2010) Twittermonitor: trend detection over the twitter stream. In: Proceedings of the 2010 ACM SIGMOD intern. conference on management of data. doi:10.1145/1807167.1807306, New York, pp 1155–1158
  19. 19.
    Middleton SE (2015) Extracting attributed verification and debunking reports from social media: mediaeval-2015 trust and credibility analysis of image and video. In: Working notes proceedings of the MediaEval 2015 workshop, Wurzen, Germany, September 14–15, CEUR-WS.org, ISSN 1613-0073. http://ceur-ws.org/Vol-1436/Paper_43.pdf
  20. 20.
    Popoola A, Krasnoshtan D, Toth AP, Naroditskiy V, Castillo C, Meier P, Rahwan I (2013) Information verification during natural disasters. In: Carr L, Laender AHF, Lscio BF, King I, Fontoura M, Vrandecic D, Aroyo L, de Oliveira JPM, Lima F, Wilde E (eds) WWW (Companion Volume). International World Wide Web Conferences Steering Committee / ACM, pp 1029–1032Google Scholar
  21. 21.
    Sakaki T, Okazaki M, Matsuo Y (2010) Earthquake shakes twitter users: real-time event detection by social sensors. In: Proceedings of the 19th international conference on world wide web, WWW ’10. doi:10.1145/1772690.1772777. ACM, New York, pp 851–860
  22. 22.
    Sherchan W, Nepal S, Paris C (2013) A survey of trust in social networks. ACM Comput Surv 45(4):47:1–47:33. doi:10.1145/2501654.2501661 CrossRefGoogle Scholar
  23. 23.
    Stamm M, Min W, Liu K (2013) Information forensics: an overview of the first decade. Access, IEEE 1:167–200. doi:10.1109/ACCESS.2013.2260814 CrossRefGoogle Scholar
  24. 24.
    Zubiaga A, Liakata M, Procter RN, Bontcheva K, Tolmie P (2015) Towards detecting rumours in social media. In: AAAI workshop on AI for citiesGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Irene Amerini
    • 1
  • Rudy Becarelli
    • 1
  • Francesco Brancati
    • 3
  • Roberto Caldelli
    • 1
    • 2
  • Gabriele Giunta
    • 4
  • Massimiliano L. Itria
    • 3
  1. 1.Media Integration and Communication CenterUniversity of FlorenceFlorenceItaly
  2. 2.National Interuniversity Consortium for Telecommunications (CNIT)ParmaItaly
  3. 3.Resiltech S.R.L.Pontedera (Pisa)Italy
  4. 4.Engineering S.P.A.RomaItaly

Personalised recommendations