Multimedia Tools and Applications

, Volume 76, Issue 5, pp 6473–6493 | Cite as

High-capacity steganography: a global-adaptive-region discrete cosine transform approach



An increasing number of spatial and frequency domain data hiding techniques have been proposed to address the relatively low embedding capacities of image-based steganography. These techniques have brought promise of higher embedding capacities, albeit at the expense of lower perceptibility. This work proposes a new discrete cosine transform (DCT) approach for color image steganography and implements a global-adaptive-region (GAR) embedding scheme that allows for extremely high embedding capacities while maintaining enhanced perceptibility. The idea is to adapt the variable region size, used to hide the data, in each DCT block of the cover image to the amount of correlation of the image values in the corresponding block. We will demonstrate how this new technique achieves enhanced hiding capacities and perceptibility compared to other spatial, Fourier, and adaptive-region DCT based steganography schemes.


Globally adaptive region data hiding Color image steganography Frequency-domain image embedding Discrete cosine transform DCT 


  1. 1.
    Ahmed N, Natarajan T, Rao K (1974) Discrete cosine transform. IEEE Trans Comput 23(1):90–93MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Anderson RJ, Petitcolas FA (1998) On the limits of steganography. IEEE J Sel Areas Commun 16(4):474–481CrossRefGoogle Scholar
  3. 3.
    Bracamonte J, Ansorge M, Pellandini F, Farine PA (2000) Low complexity image matching in the compressed domain by using the dct-phase. In: Proc. of the 6th COST, vol 276, pp 88–93Google Scholar
  4. 4.
    Bracamonte J, Ansorge M, Pellandini F, Farine PA (2005) Efficient compressed domain target image search and retrieval. In: Image and Video Retrieval, pp 154–163. SpringerGoogle Scholar
  5. 5.
    Brisbane G, aini RSN, Ogunbona P (2005) High-capacity steganography using a shared colour palette. IEE Proc., Vis. Image Signal Process 152(6):787–792CrossRefGoogle Scholar
  6. 6.
    Castleman K (1996) Digital Image Processing. Prentice Hall, Upper Saddle NJGoogle Scholar
  7. 7.
    Celik MU, Sharma G, Tekalp AM, Saber E (2005) Lossless generalized-lsb data embedding. IEEE Trans Image Process 14(2):253–266CrossRefGoogle Scholar
  8. 8.
    Chan CK, Cheng L (2004) Hiding data in images by simple LSB substitution. Pattern Recogn 37:469–474CrossRefMATHGoogle Scholar
  9. 9.
    Chang CC, Chen TS, Chung LZ (2002) A steganographic method based upon jpeg and quantization table modification. Inform Sci 141:123–138CrossRefMATHGoogle Scholar
  10. 10.
    Chang CC, Chen TS, Chung LZ (2002) A steganographic method based upon jpeg and quantization table modification. Inform Sci 141(1):123–138CrossRefMATHGoogle Scholar
  11. 11.
    Chang CC, Chen YH, Lin CC (2008) A data embedding scheme for color images based on genetic algorithm and absolute moment block truncation coding. Soft Comput 13:21–331Google Scholar
  12. 12.
    Chang CC, Hsiao JY, Chan CS (2003) Finding optimal least-significant-bit substitution in image hiding by dynamic programming strategy. Pattern Recogn 36 (7):1595–1683CrossRefGoogle Scholar
  13. 13.
    Chang CC, Lin CC, Tseng CS, Tai WL (2007) Reversible hiding in dct-based compressed images. Inform Sci 177:2768–2786CrossRefGoogle Scholar
  14. 14.
    Chang CC, Tai WL, Lin CC (2006) A reversible data hiding scheme based on side match vector quantization. IEEE Trans Circuits Syst Video Technol 16(10):1301–1308CrossRefGoogle Scholar
  15. 15.
    Chen B, Wornell G (2001) Quantization index modulation: A class of provably good methods for digital watermarking and information embedding. IEEE Trans Inf Theory 47(4):1423–1443MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Chung KL, Shen CH, Chang LC (2001) A novel svd- and vq-based image hiding scheme. Pattern Recogn Lett 22(9):1051–1058CrossRefMATHGoogle Scholar
  17. 17.
    Curran K, Bailey K (2003) An evaluation of image based steganography methods. Intern J Digital Evidence 2(2):1–40Google Scholar
  18. 18.
    IEC I (1994) Information technology-digital compression and coding of continuous-tone still images: Requirements and guidelines. Standard, ISO IEC pp. 10, 918–1Google Scholar
  19. 19.
    Iwata M, Miyake K, Shiozaki A (2004) Digital steganography utilizing features of jpeg images. IEICE Trans Fundam E87-A(4):929–936Google Scholar
  20. 20.
    Jain A, Uludag U, Hsu R (2002) Hiding a face in a fingerprint image. In: Proc. of the International Conference on Pattern Recognition (ICPR). Quebec City, CanadaGoogle Scholar
  21. 21.
    Lee Y, Chen L (2000) High capacity image steganographic model. IEE Proc., Vis. Image Signal Process 147(3):288–294CrossRefGoogle Scholar
  22. 22.
    Lin CC, Shiu PF (2009) Dct-based reversible data hiding scheme. In: Proc. of the 3rd International Conference on Ubiquitous Information Management and Communication (ICUIMC09), pp 327–335Google Scholar
  23. 23.
    Lin CC, Shiu PF (2010) High capacity data hiding scheme for dct-based images. J Inform Hiding Multi Signal Process 1(3):220–240Google Scholar
  24. 24.
    Lin CY, Chang CC, Wang YZ (2008) Reversible steganographic method with high payload for jpeg images. IEICE Trans. Inf Syst 91-D(3):836–845Google Scholar
  25. 25.
    Marvel LM, Charles G, Boncelet J, Retter CT (1999) Spread spectrum image steganography. IEEE Trans Image Process 8(8):1075–1083CrossRefGoogle Scholar
  26. 26.
    Nozaki K, Niimi M, Eason RO, Kawaguchi E (1998) A large capacity steganography using color bmp imagesGoogle Scholar
  27. 27.
    Pavlidis G, Tsompanopoulos A, Papamarkos N, Chamzas C (2003) Jpeg2000 over noisy communication channels thorough evaluation and cost analysis. Signal Process Image Commun 18(6):497–514CrossRefGoogle Scholar
  28. 28.
    Petitcolas FA, Anderson RJ, Kuhn MG (1999) Information hiding-A survey. Proc IEEE 87(7):1062–1078CrossRefGoogle Scholar
  29. 29.
    Provos N, Honeyman P (2003) Hide and seek: An introduction to steganography. In: IEEE Security & Privacy Magazine, pp 32–44. IEEE Computer SocietyGoogle Scholar
  30. 30.
    Qazanfari K, Safabakhsh R (2013) High-capacity method for hiding data in the discrete cosine transform domain. J Electron Imaging 22(4):043,009–043,009CrossRefGoogle Scholar
  31. 31.
    Rabie T (2007) Frequency-domain data hiding based on the matryoshka principle. Special Issue on Advances in Video Processing and Security Analysis for Multimedia Communications. Intern J Advanced Media and Commun 1(3):298–312CrossRefGoogle Scholar
  32. 32.
    Rabie T (2012) Digital image steganography: An fft approach. In: 4th International Conference on Networked Digital Technologies (NDT), pp 217–230. Springer VerlagGoogle Scholar
  33. 33.
    Rabie T (2013) High-capacity steganography. In: 6th International Congress on Image and Signal Processing (CISP), vol 2, pp 858–863Google Scholar
  34. 34.
    Rabie T, Kamel I (2015) On the embedding limits of the discrete cosine transform. Multimedia Tools Appl.
  35. 35.
    Rao K, Yip P (1990) Discrete Cosine Transform: Algorithms, Advantages, Applications. Academic Press, ISBN 0-12-580203-X BostonGoogle Scholar
  36. 36.
    Rodrigues J, Rios J, Puech W, et al. (2004) Ssb-4 system of steganography using bit 4. In: 5th International Workshop on Image Analysis for Multimedia Interactive ServicesGoogle Scholar
  37. 37.
    Solanki K, Jacobsen N, Madhow U, Manjunath BS, Chandrasekaran S (2004) Robust image-adaptive data hiding using erasure and error correction. IEEE Trans Image Process 13(12):1627–1639CrossRefGoogle Scholar
  38. 38.
    Tian J (2003) Reversible data embedding using a difference expansion. IEEE Trans Circuits Syst Video Technol 13(8):890–896CrossRefGoogle Scholar
  39. 39.
    Tsai P, Hu YC, Chang CC (2002) An image hiding technique using block truncation coding. In: Proc. of Pacific Rim Workshop on Digital Steganography, pp 54–64Google Scholar
  40. 40.
    Wang X, Yao Z, Li CT (2005) A palette-based image steganographic method using colour quantisation. In: Proc. of the IEEE International Conference on Image Processing (ICIP), pp II – 1090–3Google Scholar
  41. 41.
    Wu M, Liu B (2003) Data hiding in image and video:part I - fundamental issues and solutions. IEEE Trans Image Process 12(6):685–695CrossRefGoogle Scholar
  42. 42.
    Yang B, Schmucker M, Funk W, Busch C, Sun S (2004) Integer dct-based reversible watermarking for images using companding technique. Proc SPIE 5306, Security, Steganography and Watermarking of Multimedia Contents, vol 6Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Associate Professor of Computer Engineering, Department of Electrical and Computer EngineeringUniversity of SharjahSharjahUnited Arab Emirates
  2. 2.Professor & Chair, Department of Electrical and Computer EngineeringUniversity of SharjahSharjahUnited Arab Emirates

Personalised recommendations