Multimedia Tools and Applications

, Volume 76, Issue 5, pp 6159–6174 | Cite as

Hybrid secret hiding schemes based on absolute moment block truncation coding



This paper presents two secret hiding schemes based on absolute moment block truncation coding (AMBTC). One is for embedding secrets into complex blocks and the other one is for smooth blocks. As for the smooth blocks, the small variation of the block is adopted to define the embedding rule to minimize the distortion after data embedding. As for the complex blocks, the large variation of the block is used to embed more secrets while maintaining good visual quality. In the experiments, when compared to Ou and Sun’s scheme, the positive data is to confirm the higher capacity while preserving better visual quality.


Absolute moment block truncation coding (AMBTC) Data hiding Visual quality 


  1. 1.
    Alturki F, Mersereau R (2001) Secure blind image steganographic technique using discrete Fourier transformation. In: 2001 International Conference on Image Processing, vol. 2, pp. 542–545Google Scholar
  2. 2.
    Balasubramanian C, Selvakumar S, Geetha S (2013) High payload image steganography with reduced distortion using coronary pixel pairing scheme. Multimedia Tool Appl: 1–23Google Scholar
  3. 3.
    Chan CK, Cheng LM (2004) Hiding data in images by simple LSB substitution. Pattern Recogn 37(3):469–474CrossRefMATHGoogle Scholar
  4. 4.
    Chang CC, Chen TS, Chung LZ (2002) A steganographic method based upon JPEG and quantization table modification. Inf Sci 141(1C2):123–138CrossRefMATHGoogle Scholar
  5. 5.
    Chang CC, Chen YH, Lin CC (2009) A data embedding scheme for color images based on genetic algorithm and absolute moment block truncation coding. Soft Comput 13(4):321–331CrossRefGoogle Scholar
  6. 6.
    Chang CC, Kieu TD, Wu WC (2009) A lossless data embedding technique by joint neighboring coding. Pattern Recogn 42(7):1597–1603CrossRefMATHGoogle Scholar
  7. 7.
    Chang CC, Lin CY (2006) Reversible steganography for VQ-compressed images using side matching and relocation. IEEE Trans Inf Forensics Secur 1(4):493–501CrossRefGoogle Scholar
  8. 8.
    Chang CC, Lin CY, Fan YH (2008) Lossless data hiding for color images based on block truncation coding. Pattern Recogn 41(7):2347–2357CrossRefMATHGoogle Scholar
  9. 9.
    Chen J, Hong W, Chen TS, Shiu CW (2010) Steganography for BTC compressed images using no distortion technique. Imaging Sci J 58(4):177–185CrossRefGoogle Scholar
  10. 10.
    Chen B, Latifi S, Kanai J (1999) Edge enhancement of remote image data in the DCT domain. Image Vis Comput 17(12):913–921CrossRefGoogle Scholar
  11. 11.
    Chen PY, Lin HJ (2006) A DWT based approach for image steganography. Int J Appl Sci Eng 4(3):275–290Google Scholar
  12. 12.
    Chuang JC, Chang CC (2006) Using a simple and fast image compression algorithm to hide secret information. Int J Comput Appl 28(4):329–333Google Scholar
  13. 13.
    Delp E, Mitchell O (1979) Image compression using block truncation coding. IEEE Trans Commun 27(9):1335–1342CrossRefGoogle Scholar
  14. 14.
    Fridrich J, Goljan M, Du R (2001) Detecting LSB steganography in color, and gray-scale images. IEEE Multimedia 8(4):22–28CrossRefGoogle Scholar
  15. 15.
    Guo JM, Lin CY (2010) Parallel and element-reduced error-diffused block truncation coding. IEEE Trans Commun 58(6):1667–1673MathSciNetCrossRefGoogle Scholar
  16. 16.
    Guo JM, Liu YF (2010) Improved block truncation coding using optimized dot diffusion. IEEE Trans Image Process 23(3):2634–2637MathSciNetGoogle Scholar
  17. 17.
    Hashad AI, Madani AS, Wahdan A (2005) A robust steganography technique using discrete Cosine transform insertion. In: ITI 3rd International Conference on: Information and Communications Technology, 2005. Enabling Technologies for the New Knowledge Society, pp. 255–264Google Scholar
  18. 18.
    Hong W, Chen TS, Shiu CW (2008) Lossless steganography for AMBTC-compressed images. Int Congr Image Signal Process 2:13–17CrossRefGoogle Scholar
  19. 19.
    Hu YC, Lo CC, Chen WL, Wen CH (2013) Joint image coding and image authentication based on absolute moment block truncation coding. J Electron Imaging 22(1):013,012–013,012CrossRefGoogle Scholar
  20. 20.
    Kamstra L, Heijmans HJ (2005) Reversible data embedding into images using wavelet techniques and sorting. IEEE Trans Image Process 14(12):2082–2090MathSciNetCrossRefGoogle Scholar
  21. 21.
    Lema M, Mitchell O (1984) Absolute moment block truncation coding and its application to color images. IEEE Trans Commun 32(10):1148–1157CrossRefGoogle Scholar
  22. 22.
    Lin CC, Chang CC, Chen YH (2014) A novel SVD-based watermarking scheme for protecting rightful ownership of digital images. J Inf Hiding Multimedia Sign Proccess 5(2):124–143Google Scholar
  23. 23.
    Lin CC, Chen YH, Chang CC (2009) LSB-based high-capacity data embedding scheme for images. Int J Innov Comput Inf Cont 5(11B):4283–4289Google Scholar
  24. 24.
    Luo W, Huang F, Huang J (2010) Edge adaptive image steganography based on LSB matching revisited. IEEE Trans Inf Forensics Secur 5(2):201–214CrossRefGoogle Scholar
  25. 25.
    Munteanu A, Cornelis J, Auwera GVD, Cristea P (1999) Wavelet image compression – the quadtree coding approach. IEEE Trans Inf Technol Biomed 3(3):176–185CrossRefGoogle Scholar
  26. 26.
    Omoomi M, Samavi S, Dumitrescu S (2011) An efficient high payload +1 data embedding scheme. Multimedia Tool Appl 54(2):201–218CrossRefGoogle Scholar
  27. 27.
    Ou D, Sun W (2014) High payload image steganography with minimum distortion based on absolute moment block truncation coding. Multimedia Tool Appl :1–23.Google Scholar
  28. 28.
    Petitcolas FA, Anderson RJ, Kuhn MG (1999) Information hiding—a survey. Proc IEEE 87(7):1062–1078CrossRefGoogle Scholar
  29. 29.
    Shi YQ, Xuan G, Zou D et al (2005) Image steganalysis based on moments of characteristic functions using wavelet decomposition, prediction-error image, and neural network. Int Conf Multimedia Expo 2005:269–272Google Scholar
  30. 30.
    Sun W, Lu ZM, Wen YC, Yu FX, Shen RJ (2013) High performance reversible data hiding for block truncation coding compressed images. SIViP 7(2):297–306CrossRefGoogle Scholar
  31. 31.
    Walker JS (1996) Fast Fourier transforms, 2nd edn. CRC Press, Boca RatonMATHGoogle Scholar
  32. 32.
    Yang H, Yin J (2013) A secure removable visible watermarking for BTC compressed images. Multimedia Tool Appl :1–15.Google Scholar
  33. 33.
    Zhang Y, Shi-Ze G, Zhe-Ming L, Hao L (2013) Reversible data hiding for BTC-compressed images based on lossless coding of mean tables. IEICE Trans Commun 96(2):624–631CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Aeronautical Research LaboratoryNational Chung-Shan Institute of Science and TechnologyTaichungTaiwan
  2. 2.Department of Computer ScienceUniversity of WarwickConventryUK
  3. 3.Department of M-Commerce and Multimedia ApplicationsAsia UniversityTaichungTaiwan
  4. 4.Department of Medical Research, China Medical University HospitalChina Medical UniversityTaichungTaiwan

Personalised recommendations