Multimedia Tools and Applications

, Volume 76, Issue 2, pp 1801–1815 | Cite as

An anonymous two-factor authenticated key agreement scheme for session initiation protocol using elliptic curve cryptography

Article

Abstract

The Session Initiation Protocol (SIP) is a signaling protocol widely applied in the world of multimedia communication. Numerous SIP authenticated key agreement schemes have been proposed with the purpose of ensuring security communication. Farash recently put forward an enhancement employing smart cards counted on Zhang et al.’s scheme. In this study, we observe that the enhanced scheme presented by Farash has also some security pitfalls, such as disclosure of user identity, lack of a pre-authentication in the smart card and vulnerability to key-compromise masquerading attack which results in an off-line guessing attack. We then propose an anonymous modified scheme with elliptic curve cryptography to eliminate the security leakages of the scheme proposed by Farash. We demonstrate that our scheme is immune to different kinds of attacks including attacks involved in Farash’s scheme. We mention Burrows-Abadi-Needham logic for completeness of the proposed scheme. Also, we compare the performance of our scheme with its predecessor schemes and the comparative results shows that it perfectly satisfies the needs of SIP.

Keywords

Authenticated key agreement Two-factor Smart cards Session initiation protocol 

References

  1. 1.
    Arshad R, Ikram N (2013) Elliptic curve cryptography based mutual authentication scheme for session initiation protocol. Multimed Tools Appl 66(2):165–178CrossRefGoogle Scholar
  2. 2.
    Arshad H, Nikooghadam M (2014) An efficient and secure authentication and key agreement scheme for session initiation protocol using ECC. Multimed Tools Appl:1–17. doi:10.1007/s11042-014-2282-x
  3. 3.
    Burrow M, Abadi M, Needham R (1990) A logic of authentication. ACM Trans Comput Syst 08:18–36CrossRefGoogle Scholar
  4. 4.
    Deebak BD, Muthaiah R, Thenmozhi K, Swaminathan PI Analyzing three-party authentication and key agreement protocol for real time IP multimedia server-client systems. Multimed Tools Appl:1–23. doi:10.1007/s11042-015-2542-4
  5. 5.
    Franks J, Hallam-Baker P, Hostetler J, Lawrence S, Leach P, Luotonen A (1999) HTTP authentication: basic and digest access authentication. IETF RFC2617Google Scholar
  6. 6.
    Farash MS, Kumari S, Bakhtiari M (2015) Cryptanalysis and improvement of a robust smart card secured authentication scheme on SIP using elliptic curve cryptography. Multimed Tools Appl:1–20. doi:10.1007/s11042-015-2487-7
  7. 7.
    Farash MS (2014) An improved password-based authentication scheme for session initiation protocol using smart cards without verification table. Int J Commun Syst. doi:10.1002/dac.2879 Google Scholar
  8. 8.
    Guo L, Zhang C, Sun J, Fang Y (2014) A privacy-preserving attribute-based authentication system for mobile health networks. IEEE Trans Mobile Comput 13 (9):1927–1941CrossRefGoogle Scholar
  9. 9.
    Irshad A, Sher M, Rehman E, Ashraf ChS, Hassan MU, Ghani A (2013) A single round-trip SIP authentication scheme for voice over internet protocol using smart card. Multimed Tools Appl. doi:10.1007/s11042-013-1807-z Google Scholar
  10. 10.
    Jiang Q, Ma J, Tian Y (2014) Cryptanalysis of smart-card-based password authenticated key agreement protocol for session initiation protocol of Zhang et al. Int J Commun Syst. doi:10.1002/dac.2767 Google Scholar
  11. 11.
    Jo HJ, Paik JH, Lee DH (2014) Efficient Privacy-Preserving Authentication in Wireless Mobile Networks. IEEE Trans Mob Comput 13(7):1469–1481CrossRefGoogle Scholar
  12. 12.
    Kilinc HH, Yanik T (2014) A survey of SIP authentication and key agreement schemes. IEEE Commun Surv Tut 16(2):1005–1023CrossRefGoogle Scholar
  13. 13.
    Koblitz N (1987) Elliptic curve cryptosystems. Math Comput 48:203–209MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Koblitz N, Menezes A, Vanstone S (2000) The state of elliptic curve cryptography. Design Code Cryptogr 19:173–193MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Kocher P, Jaffe J, Jun B (1999) Differential power analysis. Advances in Cryptology(Crypto’99), vol 1666, pp 788–797Google Scholar
  16. 16.
    Liu J, Zhang Z, Chen X, Kwak KS (2014) Certificateless Remote Anonymous Authentication Schemes for WirelessBody Area Networks. IEEE Trans Parall Dister 25 (2):332–342CrossRefGoogle Scholar
  17. 17.
    Lu RX, Lin XD, Zhu HJ, Liang XH, Shen XM (2012) BECAN: a bandwidth-efficient cooperative authentication scheme for filtering injected false data in wireless sensor networks. IEEE Trans Paral Dister 23(1):32–43CrossRefGoogle Scholar
  18. 18.
    Lu YR, Li LX, Peng HP, Yang YX (2015) Robust and efficient authentication scheme for session initiation protocol. Math Probl Eng. 2015, Article ID 894549, p 9. doi:10.1155/2015/894549
  19. 19.
    Miller V (1986) Uses of elliptic curves in cryptography. In: Advances in cryptology CRYPTO’85. Lecture Notes in Computer Science, vol 218. Springer, Berlin Heidelberg New York, pp 417–426Google Scholar
  20. 20.
    Qin Z, Xiong H, Zhu G, Chen Z (2014) Certificate-free ad hoc anonymous authentication. Inf Sci 268:447–457MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Rosenberg J, Schulzrinne H, Camarillo G, Johnston A, Peterson J, Sparks R, Handley M, Schooler E (2002) SIP: session initiation protocol. IETFRFC 3261Google Scholar
  22. 22.
    Song R (2010) Advanced smart card based password authentication protocol. Comput Stand & Inter 32(5):321–325CrossRefGoogle Scholar
  23. 23.
    Sun DZ, Huai JP, Sun JZ, Zhang JW, Feng ZY (2009) Improvements of Juang et al.’s password-authenticated key agreement scheme using smart cards. IEEE Trans Ind Electron 56(6):2284–2291CrossRefGoogle Scholar
  24. 24.
    Tang H, Liu X (2013) Cryptanalysis of Arshad et al.’s ECC-based mutual authentication scheme for session initiation protocol. Multimed Tools Appl 65(3):321–333CrossRefGoogle Scholar
  25. 25.
    Tu H, Kumar N, Chilamkurti N et al (2014) An improved authentication protocol for session initiation protocol using smart card. Peer Peer Netw Appl, pp 1–8Google Scholar
  26. 26.
    Turkanović M, Brumen B, Hölbl M (2014) A novel user authentication and key agreement scheme for heterogeneous ad hoc wireless sensor networks, based on the internet of things notion. Ad Hoc Netw 20:96–112CrossRefGoogle Scholar
  27. 27.
    Wang D, He DB, Wang P, Chu CH (2014) Anonymous two-factor authentication in distributed systems: certain goals are beyond attainment. IEEE Trans Depend Secure. doi:10.1109/TDSC.2014.2355850
  28. 28.
    Yang CC, Wang RC, Liu WT (2005) Secure authentication scheme for session initiation protocol. Comput Secur 24:381–386CrossRefGoogle Scholar
  29. 29.
    Yeh HL, Chen TH, Shih WK (2014) Robust smart card secured authentication scheme on SIP using elliptic curve cryptography. Comput Stand Inter 36(2):397–402CrossRefGoogle Scholar
  30. 30.
    Zhang L, Tang S, Cai Z (2013) Efficient and flexible password authenticated key agreement for voice over internet protocol session initiation protocol using smart card. Int J Commun Syst. doi:10.1002/dac.2499 Google Scholar
  31. 31.
    Zhang L, Tang S, Cai Z (2014) Cryptanalysis and improvement of password authenticated key agreement for session initiation protocol using smart cards. Secur Commun Netw. doi:10.1002/sec.951 Google Scholar
  32. 32.
    Zhu XY, Jiang SR, Wang LM, Li H (2014) Efficient privacy-preserving authentication for vehicular ad hoc networks. IEEE Trans Veh Technol 63(2):907–919CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Yanrong Lu
    • 1
    • 2
  • Lixiang Li
    • 1
    • 2
  • Haipeng Peng
    • 1
    • 2
  • Yixian Yang
    • 1
    • 2
  1. 1.Information Security Center, State Key Laboratory of Networking and Switching TechnologyBeijing University of Posts and TelecommunicationsBeijingChina
  2. 2.National Engineering Laboratory for Disaster Backup and RecoveryBeijing University of Posts and TelecommunicationsBeijingChina

Personalised recommendations