Multimedia Tools and Applications

, Volume 76, Issue 4, pp 6031–6050 | Cite as

A reversible data hiding scheme for VQ indices using histogram shifting of prediction errors

Article
  • 104 Downloads

Abstract

Concomitant with the rapid advancements in information technology, the issue of secure data transmission through the Internet has become increasingly important. Hiding data in images is an important technique in digital media; it facilitates confidential data transfer to receivers and renders the data virtually undetectable by third parties. In this paper, a novel reversible data hiding scheme based on vector quantization (VQ) is proposed. First, codebook sorting is employed to enhance the correlation of neighbor indices and then a prediction error technique is used to generate a high peak histogram. The secret data are then embedded via histogram shifting of prediction errors. Our proposed scheme utilizes only one codebook, unlike other similar methods, and the stego carrier (index table after embedding) can be decompressed without secret data extraction to avoid detection by third parties. Experimental results indicate that the proposed scheme has better visual image quality and greater embedding capacity than recently proposed schemes of a similar nature.

Keywords

Reversible data hiding Vector quantization Histogram shifting Prediction errors 

References

  1. 1.
    Al-Qershi OM, Khoo BE (2011) High capacity data hiding schemes for medical images based on difference expansion. J Syst Softw 84(1):105–112CrossRefGoogle Scholar
  2. 2.
    Bender W, Gruhl D, Morimoto N, Lu A (1996) Techniques for data hiding. IBM Syst J 35:313–336. doi:10.1147/sj.353.0313 CrossRefGoogle Scholar
  3. 3.
    Chan CK, Cheng LM (2004) Hiding data in images by simple LSB substitution. Pattern Recognit 37:469–474. doi:10.1016/j.patcog.2003.08.007 CrossRefMATHGoogle Scholar
  4. 4.
    Chang YT, Huang CC-L, Huang CC-L, Wang S (2014) Data hiding of high compression ratio in VQ indices with neighboring correlations. Multimed Tools Appl 74:1645–1666. doi:10.1007/s11042-014-2019-x CrossRefGoogle Scholar
  5. 5.
    Chang CC, Kieu TD, Chou YC (2009) Reversible information hiding for VQ indices based on locally adaptive coding. J Vis Commun Image Represent 20:57–64. doi:10.1016/j.jvcir.2008.08.005 CrossRefGoogle Scholar
  6. 6.
    Chang C-C, Nguyen TS, Lin C-C (2011) A reversible data hiding scheme for VQ indices using locally adaptive coding. J Vis Commun Image Represent 22:664–672. doi:10.1016/j.jvcir.2011.06.005 CrossRefGoogle Scholar
  7. 7.
    Chang CC, Wu WC, Hu YC (2007) Lossless recovery of a VQ index table with embedded secret data. J Vis Commun Image Represent 18:207–216. doi:10.1016/j.jvcir.2006.11.005 CrossRefGoogle Scholar
  8. 8.
    Hong W, Chen TS, Shiu CW (2009) Reversible data hiding for high quality images using modification of prediction errors. J Syst Softw 82:1833–1842. doi:10.1016/j.jss.2009.05.051 CrossRefGoogle Scholar
  9. 9.
    Hsu CT, Wu JL (1999) Hidden digital watermarks in images. IEEE Trans Image Process 8:58–68. doi:10.1109/83.736686 CrossRefGoogle Scholar
  10. 10.
    Kim T (1992) Side match and overlap match vector quantizers for images. IEEE Trans Image Process 1:170–185. doi:10.1109/83.136594 CrossRefGoogle Scholar
  11. 11.
    Langelaar GC, Lagendijk RL (2001) Optimal differential energy watermarking of DCT encoded images and video. IEEE Trans Image Process 10:148–158. doi:10.1109/83.892451 CrossRefMATHGoogle Scholar
  12. 12.
    Lin Y-K (2012) High capacity reversible data hiding scheme based upon discrete cosine transformation. J Syst Softw 85:2395–2404. doi:10.1016/j.jss.2012.05.032 CrossRefGoogle Scholar
  13. 13.
    Linde Y, Buzo A, Gray R (1980) An algorithm for vector quantizer design. IEEE Trans Commun 28:84–95. doi:10.1109/TCOM.1980.1094577 CrossRefGoogle Scholar
  14. 14.
    Lou DC, Liu JL (2002) Steganographic method for secure communications. Comput Secur 21:449–460. doi:10.1016/S0167-4048(02)00515-1 CrossRefGoogle Scholar
  15. 15.
    Mallat SG (1989) A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans Pattern Anal Mach Intell 11:674–693. doi:10.1109/34.192463 CrossRefMATHGoogle Scholar
  16. 16.
    Ni ZNZ, Shi Y-QSY-Q, Ansari N, Su WSW (2006) Reversible data hiding. IEEE Trans Circuits Syst Video Technol 16:354–362. doi:10.1109/TCSVT.2006.869964 CrossRefGoogle Scholar
  17. 17.
    Qin C, Chang C-C, Huang Y-H, Liao L-T (2013) An inpainting-assisted reversible steganographic scheme using a histogram shifting mechanism. IEEE Trans Circuits Syst Video Technol 23:1109–1118. doi:10.1109/TCSVT.2012.2224052 CrossRefGoogle Scholar
  18. 18.
    Qin C, Chang CC, Chen YC (2013) Efficient reversible data hiding for VQ-compressed images based on index mapping mechanism. Signal Process 93:2687–2695. doi:10.1016/j.sigpro.2013.03.036 CrossRefGoogle Scholar
  19. 19.
    Qin C, Chang CC, Chiu YP (2014) A novel joint data-hiding and compression scheme based on SMVQ and image inpainting. IEEE Trans Image Process 23:969–978. doi:10.1109/TIP.2013.2260760 MathSciNetCrossRefGoogle Scholar
  20. 20.
    Tian J (2003) Reversible data embedding using a difference expansion. IEEE Trans Circuits Syst 13:890–896. doi:10.1109/TCSVT.2003.815962 Google Scholar
  21. 21.
    Tsai P (2009) Histogram-based reversible data hiding for vector quantisation-compressed images. IET Image Process 3:100–114. doi:10.1049/iet-ipr.2007.0220 MathSciNetCrossRefGoogle Scholar
  22. 22.
    Tsai CL, Chiang HF, Fan KC, Chung CD (2005) Reversible data hiding and lossless reconstruction of binary images using pair-wise logical computation mechanism. Pattern Recognit 38:1993–2006. doi:10.1016/j.patcog.2005.03.001 CrossRefGoogle Scholar
  23. 23.
    Wang Z, Bovik A (2002) A universal image quality index. IEEE Signal Process Lett 9:81–84. doi:10.1109/97.995823 CrossRefGoogle Scholar
  24. 24.
    Wang Z, Bovik AC, Sheikh HR, Simoncelli EP (2004) Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process 13:600–612. doi:10.1109/TIP.2003.819861 CrossRefGoogle Scholar
  25. 25.
    Wang Y, Doherty JF, Van Dyck RE (2002) A wavelet-based watermarking algorithm for ownership verification of digital images. IEEE Trans Image Process 11:77–88. doi:10.1109/83.982816 CrossRefGoogle Scholar
  26. 26.
    Wang WJ, Huang CT, Wang SJ (2011) VQ applications in steganographic data hiding upon multimedia images. IEEE Syst J 5:528–537. doi:10.1109/JSYST.2011.2165603 CrossRefGoogle Scholar
  27. 27.
    Xuan GXG, Shi YQ, Ni ZC (2004) High capacity lossless data hiding based on integer wavelet transform. 2004 I.E. Int Symp Circuits Syst (IEEE Cat No04CH37512). doi:10.1109/ISCAS.2004.1329200 Google Scholar
  28. 28.
    Xuan G, Zhu J, Chen J et al (2002) Distortionless data hiding based on integer wavelet transform. Electron Lett 38:1646. doi:10.1049/el:20021131 CrossRefGoogle Scholar
  29. 29.
    Yang CH, Lin YC (2009) Reversible data hiding of a VQ index table based on referred counts. J Vis Commun Image Represent 20:399–407. doi:10.1016/j.jvcir.2009.04.001 CrossRefGoogle Scholar
  30. 30.
    Yang CH, Lin YC (2010) Fractal curves to improve the reversible data embedding for VQ-indexes based on locally adaptive coding. J Vis Commun Image Represent 21:334–342. doi:10.1016/j.jvcir.2010.02.008 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.School of Defense Science, Chung-Cheng Institute of TechnologyNational Defense UniversityTaoyuan CountyRepublic of China
  2. 2.Department of Electrical and Electronic Engineering, Chung-Cheng Institute of TechnologyNational Defense UniversityTaoyuan CountyRepublic of China

Personalised recommendations