Multimedia Tools and Applications

, Volume 76, Issue 2, pp 1983–2000 | Cite as

Full band watermarking in DCT domain with Weibull model

Article

Abstract

In the framework of maximum-likelihood detection for image watermarking schemes, the conventional Generalized Gaussian Distribution (GGD), Cauchy and Student’s t distributions often fail to model the pulse-like distributions, such as Discrete Cosine Transform (DCT) coefficient distribution. Meanwhile DCT DC coefficients are often neglected in the image watermarking schemes. In this paper an improved full band image watermarking algorithm with utilization of Weibull distribution modeling the DCT AC and DC coefficients is proposed. Experiments indicate that compared with other popluar distributions such as the GGD, the Weibull model gives a closer fit on the distribution of AC coefficients in absolute domain with a smaller Kullback-Leibler (KL) divergence and lower Mean Square Error (MSE). The watermarking scheme with Weibull modeling the DCT AC coefficients (Weibull-AC) exhibits strong robustness under the attack of scaling and median filtering. The watermarking scheme with Weibull modeling the DCT DC coefficients (Weibull-DC) yields a better detection accuracy for bright and more detailed images. Combining the above two advantages, the proposed Weibull based full band watermarking in DCT domain (Weibull-FB) further improves its robustness under the attack of JPEG compression and achieves 10.47 % overall increment in the detection accuracy compared with the baseline system while maintaining good invisibility in the view of structural similarity (SSIM).

Keywords

Image watermarking DCT Weibull distribution Signal detection 

References

  1. 1.
    Achatz RJ, Cotton MG, Dalke RA (2004) Estimating and graphing the amplitude probability distribution function of complex-baseband signals. US DoC, NTIA/ITS, IEEE 802. 15 Working Group for Wireless Personal Area NetworksGoogle Scholar
  2. 2.
    Akhaee MA, Sahraeian SME, Marvasti F (2010) Contourlet-based image watermarking using optimum detector in a noisy environment. IEEE T Image Process 19(4):967–980. doi:10.1109/TIP.2009.2038774 MathSciNetCrossRefGoogle Scholar
  3. 3.
    Balakrishnan N, Kateri M (2008) On the maximum likelihood estimation of parameters of Weibull distribution based on complete and censored data. Stat Probab Lett 78(17):2971–2975. doi:10.1016/j.spl.2008.05.019 MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Barni M, Bartolini F, De Rosa A, Piva A (2001) A new decoder for the optimum recovery of nonadditive watermarks. IEEE T Image Process 10(5):755–766. doi:10.1109/83.918568 CrossRefGoogle Scholar
  5. 5.
    Briassouli A, Strintzis MG (2004) Locally optimum nonlinearities for DCT watermark detection. IEEE T Image Process 13(12):1604–1617. doi:10.1109/TIP.2004.837516 CrossRefGoogle Scholar
  6. 6.
    Briassouli A, Tsakalides P, Stouraitis A (2005) Hidden messages in heavy-tails: DCT-domain watermark detection using alpha-stable models. IEEE Multimedia 7(4):700–715. doi:10.1109/TMM.2005.850970 CrossRefGoogle Scholar
  7. 7.
    Cheng Q, Huang TS (2001) An additive approach to transform-domain information hiding and optimum detection structure. IEEE Multimedia 3(3):273–284. doi:10.1109/6046.944472 CrossRefGoogle Scholar
  8. 8.
    Cheng Q, Huang TS (2003) Robust optimum detection of transform domain multiplicative watermarks. IEEE T Signal Process 51(4):906–924. doi:10.1109/TSP.2003.809374 MathSciNetCrossRefGoogle Scholar
  9. 9.
    Das C, Panigrahi S, Sharma VK, Mahapatra KK (2014) A novel blind robust image watermarking in DCT domain using inter-block coefficient correlation. AEU-Int J Electron C 68(3):244–253. doi:10.1016/j.aeue.2013.08.018 CrossRefGoogle Scholar
  10. 10.
    Do MN, Vetterli M (2002) Wavelet-based texture retrieval using generalized Gaussian density and Kullback-Leibler distance. IEEE T Image Process 11(2):146–158. doi:10.1109/83.982822 MathSciNetCrossRefGoogle Scholar
  11. 11.
    Dong L, Yan Q, Liu M, Pan YX (2014) Maximum likelihood watermark detection in absolute domain using Weibull model. In: Proceedings of IEEE Region 10 Technical Symposium 2014, Kuala Lumpur, Malaysia, 14–16 April, pp 196–199. doi:10.1109/TENCONSpring.2014.6863024
  12. 12.
    Fang YM, Lin WS, Chen ZZ, Tsai CM, Lin CW (2014) A video saliency detection model in compressed domain. IEEE T Circ Syst Vid 24(1):27–38. doi:10.1109/TCSVT.2013.2273613 CrossRefGoogle Scholar
  13. 13.
    Ghouti L, Andalusi AM (2012) High-capacity colour image watermarking using multi-dimensional Fourier transforms and semi-random LDPC codes. In: Proceedings of IET Conference on Image Processing 2012, London, UK, 3–4 July, pp 1–5. doi:10.1049/cp.2012.0456
  14. 14.
    Hernandez JR, Amado M, Perez-Gonzalez F (2000) DCT-domain watermarking techniques for still images: detector performance analysis and a new structure. IEEE T Image Process 9(1):55–68. doi:10.1109/83.817598 CrossRefGoogle Scholar
  15. 15.
    Hsu LY, Hu HT (2015) Blind image watermarking via exploitation of inter-block prediction and visibility threshold in DCT domain. J J Vis Commum Image R 32:130–143. doi:10.1016/j.jvcir.2015.07.017 CrossRefGoogle Scholar
  16. 16.
    Huang JW, Shi YQ, Shi Y (2000) Embedding image watermarks in DC components. IEEE T Circ Syst Vid 10(6):974–979. doi:10.1109/76.867936 CrossRefGoogle Scholar
  17. 17.
    Leng L, Zhang J, Chen XL, Khan MK, Alghathbar K (2010) Dynamic weighted discrimination power analysis: A novel approach for face and palmprint recognition in DCT domain. Int J Phys Sci 5(17):2543–2554Google Scholar
  18. 18.
    Liu CH, Rubin DB (1995) ML estimation of the t distribution using EM and its extensions, ECM and ECME. Stat Sinica 5(1):19–39MathSciNetMATHGoogle Scholar
  19. 19.
    Liu W, Dong L, Zeng W (2007) Optimum detection for spread-spectrum watermarking that employs self-masking. IEEE T Inf Foren Sec 2(4):645–654. doi:10.1109/TIFS.2007.908226 CrossRefGoogle Scholar
  20. 20.
    Mairgiotis A, Kondi L, Yang YY (2013) Locally optimum detection for additive watermarking in the DCT and DWT domains through non-Gaussian distributions. In: Proceedings of the 18th International Conference on Digital Signal Processing, Fira, Greek, 1–3 July 2013, pp 1–6. doi:10.1109/ICDSP.2013.6622794
  21. 21.
    Ng TM, Garg HK (2005) Maximum likelihood detection in image watermarking using generalized gamma model. In: Proceedings of the 39th Asilomar Conference on Signals, Systems and Computers, 28 Oct-1 Nov 2005, pp 1680–1684. doi:10.1109/ACSSC.2005.1600055
  22. 22.
    Poor HV (1994) An introduction to signal detection and estimation. Springer, New York, pp. 51–53. doi:10.1007/978-1-4757-2341-0 CrossRefMATHGoogle Scholar
  23. 23.
    Schuster S (2012) Parameter estimation for the Cauchy distribution. In: Proceedings of the 19th International Conference on Systems, Signals and Image Processing, Vienna, Austria, 11–13 April 2012, pp 350–353Google Scholar
  24. 24.
    Singh J, Garg P, De A (2014) Multiplicative watermarking of audio in DFT magnitude. Multimedia Tools Appl 71(3):1431–1453. doi:10.1007/s11042-012-1282-y CrossRefGoogle Scholar
  25. 25.
    SIPI Image Database. University of Southern California. http://sipi.usc.edu/database/. Accessed 14 April 2015
  26. 26.
    Song KS (2006) A globally convergent and consistent method for estimating the shape parameter of a generalized Gaussian distribution. IEEE T Inform Theory 52(2):510–527. doi:10.1109/TIT.2005.860423 MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Su QT, Wang G, Jia SL, Zhang XF, Liu QM, Liu XX (2015) Embedding color image watermark in color image based on two-level DCT. SIViP 9(5):991–1007. doi:10.1007/s11760-013-0534-2 CrossRefGoogle Scholar
  28. 28.
    Teimouri M, Arjun KG (2013) On the three-parameter Weibull distribution shape parameter estimation. J Data Sci 11(3):403–414MathSciNetGoogle Scholar
  29. 29.
    Valizadeh A, Wang ZJ (2012) Efficient blind decoders for additive spread spectrum embedding based data hiding. EURASIP J Adv Sig Process 2012(1):1–21. doi:10.1186/1687-6180-2012-88 CrossRefGoogle Scholar
  30. 30.
    Victor P, Cavagnino D, Botta M (2015) SS-SVD: Spread spectrum data hiding scheme based on Singular Value Decomposition. In: Proceedings of the IEEE International Symposium on Consumer Electronics (ISCE), Madrid, 24–26 June 2015, pp 1–2. doi:10.1109/ISCE.2015.7177769
  31. 31.
    Wang Z, Bovik AC, Sheikh HR, Simoncelli EP (2004) Image quality assessment: from error visibility to structural similarity. IEEE T Image Process 13(4):600–612. doi:10.1109/TIP.2003.819861 CrossRefGoogle Scholar
  32. 32.
    Wei Z, Ngan KN (2008) Spatial just noticeable distortion profile for image in DCT domain. In: Proceedings of the International Conference on Multimedia and Expo, Hannover, June, pp 925–928. doi:10.1109/ICME.2008.4607587

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.College of Computer and InformationHohai UniversityNanjingChina
  2. 2.College of Computer and Information EngineeringXinjiang Agriculture UniversityUrumqiChina

Personalised recommendations