Multimedia Tools and Applications

, Volume 75, Issue 15, pp 9241–9254 | Cite as

Spatial-dictionary for collaborative representation classification of hyperspectral images

  • Siyuan Hao
  • Liguo Wang
  • Lorenzo Bruzzone
  • Qunming Wang
Article

Abstract

In this paper, we propose a spatial-dictionary (SD) for collaborative representation classification (SCRC) of hyperspectral images. The proposed method consists of four main steps. First, we extract spatial features using 2-D Gabor filters and stack them with spectral features. Second, the SD is constructed by incorporating the spatial information of sparse vectors into the dictionary optimization process. Third, a multiple-mapping kernel is exploited to further integrate spatial information into the CRC framework. Lastly, the test samples are allocated with the class labels. Experimental results obtained on two hyperspectral datasets demonstrate that the proposed SCRC method can yield higher classification accuracy with much lower computational cost when compared to other traditional classifiers.

Keywords

Hyperspectral image classification Spatial information Dictionary learning CRC Remote sensing 

References

  1. 1.
    Aharon M, Elad M, Bruckstein A (2006) K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation. IEEE Trans Signal Process 54(11):4311–4322CrossRefGoogle Scholar
  2. 2.
    Camps Valls G, Gomez Chova L, Munoz Mari J, Vila Frances J, Calpe Maravilla J (2006) Composite kernels for hyperspectral image classification. IEEE Geosci Remote Sens Lett 3(1):93–97CrossRefGoogle Scholar
  3. 3.
    Chen Y, Nasrabadi NM, Tran TD (2011) Hyperspectral image classification using dictionary-based sparse representation. IEEE Trans Geosci Remote Sens 49(10):3973–3985CrossRefGoogle Scholar
  4. 4.
    Chen Y, Nasrabadi NM, Tran TD (2012) Discriminative dictionary design using LVQ for hyperspectral image classification. Hyperspectral Image and Signal Processing (WHISPERS), 2012 4th Workshop on, Shanghai, China 1–4Google Scholar
  5. 5.
    Li W, Du Q, Xiong MM (2015) Kernel collaborative representation with Tikhonov regularization for hyperspectral image classification. IEEE Geosci Remote Sens Lett 12(1):48–52Google Scholar
  6. 6.
    Li J, Zhang H, Huang Y, Zhang L (2014) Hyperspectral image classification by nonlocal joint collaborative representation with a locally adaptive dictionary. IEEE Trans Geosci Remote Sens 52(6):3707–3719CrossRefGoogle Scholar
  7. 7.
    Liu J, Wu Z, Wei Z, Xiao L, Sun L (2013) Spatial-spectral kernel sparse representation for hyperspectral image classification. IEEE J Sel Top Appl Earth Obs Remote Sens 6(6):2462–2471CrossRefGoogle Scholar
  8. 8.
    Mairal J, Bach F, Ponce J, Sapiro G (2009) Online dictionary learning for sparse coding. The International Conference on Machine Learning, Montreal, pp 689–696MATHGoogle Scholar
  9. 9.
    Meng L, Tan A-H, Leung C, Nie L, Chua T-S, Miao C (2015) Online multimodal co-indexing and retrieval of weakly labeled web image collections. International Conference on Multimedia Retrieval, Shanghai, China, Apr. 10Google Scholar
  10. 10.
    Ni B, Yan S, Kassim A (2009) Directed Markov Stationary Features for visual classification. IEEE International Conference on Acoustics, Speech and Signal Processing 825–828Google Scholar
  11. 11.
    Nie L, Wang M, Zha Z-J, Li G, Chua T-S (2011) Multimedia answering: enriching text QA with media information. In Proceeding of the 34th International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2011, Beijing, China, July 25–29Google Scholar
  12. 12.
    Nie L, Wang M, Zha Z-J, Chua T-S (2012) Oracle in image search: a content-based approach to performance prediction. ACM Trans Inf Syst 30(2):1–23CrossRefGoogle Scholar
  13. 13.
    Nie L, Yan S, Wang M, Hong R, Chua T-S (2012) Harvesting visual concepts for image search with complex queries. In Proceedings of the 20th ACM international conference on Multimedia, Nara, Japan, October 29 - November 02Google Scholar
  14. 14.
    Ptucha R, Savakis AE (2014) LGE-KSVD: robust sparse representation classification. IEEE Trans Image Process 23(4):1737–1750MathSciNetCrossRefGoogle Scholar
  15. 15.
    Wang LG, Hao SY, Wang QM, Atkinson PM (2014) A multiple-mapping kernel for hyperspectral image classification. IEEE Geosci Remote Sens Lett PP(99): 1–5Google Scholar
  16. 16.
    Wang LG, Hao SY, Wang QM, Wang Y (2014) Semi-supervised classification for hyperspectral imagery based on spatial-spectral label propagation. ISPRS J Photogramm Remote Sens 97:123–137CrossRefGoogle Scholar
  17. 17.
    Wang Z, Nasrabadi NM, Huang TS (2014) Spatial–spectral classification of hyperspectral images using discriminative dictionary designed by learning vector quantization. IEEE Trans Geosci Remote Sens 52(8):4808–4822CrossRefGoogle Scholar
  18. 18.
    Wang W, Yan Y, Sebe N (2015) Attribute guided dictionary learning. Proceedings of International Conference on Multimedia Retrieval, Shanghai, China: 211–218Google Scholar
  19. 19.
    Waqas J, Yi Z, Zhang L (2013) Collaborative neighbor representation based classification using l2-minimization approach. Pattern Recogn Lett 34:201–208CrossRefGoogle Scholar
  20. 20.
    Wright J, Yang AY, Ganesh A, Sastry SS, Ma Y (2009) Robust face recognition via sparse representation. IEEE Trans Pattern Anal Mach Intell 31(2):210–227CrossRefGoogle Scholar
  21. 21.
    Yan Y, Ricci E, Liu G, Sebe N (2015) Egocentric daily activity recognition via multitask clustering. IEEE Trans Image Process 24(10):2984–2995MathSciNetCrossRefGoogle Scholar
  22. 22.
    Yan Y, Ricci E, Subramanian R, Liu G, Sebe N (2014) Multi-task linear discriminant analysis for multi-view action recognition. IEEE Trans Image Process 23(12):5599–5611MathSciNetCrossRefGoogle Scholar
  23. 23.
    Yan Y, Yang Y, Meng D, Liu G, Tong W, Hauptmann A, Sebe N (2015) Event oriented dictionary learning for complex event detection. IEEE Trans Image Process 24(6):1867–1878MathSciNetCrossRefGoogle Scholar
  24. 24.
    Zhang L, Wang M, Nie L, Liang H, Rui Y, Tian Q (2015) Retargeting semantically-rich photos. IEEE Trans Multimed 17(9):1538–1549CrossRefGoogle Scholar
  25. 25.
    Zhang L, Yang M, Feng X (2011) Sparse representation or collaborative representation: which helps face recognition?. IEEE International Conference on Computer Vision, Barcelona, Spain, Nov 471–478Google Scholar
  26. 26.
    Zhigang M, Feiping N, Yi Y, Uijlings JRR, Sebe N (2012) Web image annotation via subspace-sparsity collaborated feature selection. IEEE Trans Multimed 14(4):1021–1030CrossRefGoogle Scholar
  27. 27.
    Yan, Y., Ricci, E., Subramanian, R., Liu, G., Lanz, O., & Sebe, N. (2015). A Multi-task Learning Framework for Head Pose Estimation under Target Motion.IEEE Transactions on Pattern Analysis & Machine Intelligence, (1):1-1.Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Siyuan Hao
    • 1
  • Liguo Wang
    • 1
  • Lorenzo Bruzzone
    • 2
  • Qunming Wang
    • 3
  1. 1.The College of Information and Communications EngineeringHarbin Engineering UniversityHarbinChina
  2. 2.The Department of Information Engineering and Computer ScienceUniversity of TrentoTrentoItaly
  3. 3.The Department of Land Surveying and Geo-InformaticsThe Hong Kong Polytechnic UniversityKowloonHong Kong

Personalised recommendations