Multimedia Tools and Applications

, Volume 76, Issue 3, pp 4159–4177 | Cite as

Class specific centralized dictionary learning for face recognition

  • Bao-Di Liu
  • Liangke Gui
  • Yuting Wang
  • Yu-Xiong Wang
  • Bin Shen
  • Xue Li
  • Yan-Jiang Wang


Sparse representation based classification (SRC) and collaborative representation based classification (CRC) have demonstrated impressive performance for visual recognition. SRC and CRC assume that the training samples in each class contribute equally to the dictionary and thus generate the dictionary that consists of the training samples in the corresponding class. This may lead to high residual error and instability, to the detriment of recognition performance. One solution is to use the class specific dictionary learning (CSDL) algorithm, which has greatly improved the classification accuracy. However, the CSDL algorithm fails to consider the constraints to sparse codes. In particular, it cannot guarantee that the sparse codes in the same class will be concentrated based on the learned dictionary for each class. Such concentration is actually beneficial to classification. To address these limitations, in this paper, we propose a class specific centralized dictionary learning (CSCDL) algorithm to simultaneously consider the desired characteristics for both dictionary and sparse codes. The blockwise coordinate descent algorithm and Lagrange multipliers are used to optimize the corresponding objective function. Extensive experimental results on face recognition benchmark datasets demonstrate the superior performance of our CSCDL algorithm compared with conventional approaches.


Centralized dictionary learning Face recognition Class specific 



This paper is supported partly by the National Natural Science Foundation of China (Grant No. 61402535, No. 61271407), the Natural Science Foundation for Youths of Shandong Province, China (Grant No. ZR2014FQ001) , Qingdao Science and Technology Project (No. 14-2-4-111-jch), and the Fundamental Research Funds for the Central Universities, China University of Petroleum (East China) (Grant No. 14CX02169A).


  1. 1.
    Belhumeur PN, Hespanha JP, Kriegman D (1997) Eigenfaces vs. fisherfaces: Recognition using class specific linear projection. IEEE Trans Pattern Anal Mach Intel 19(7):711–720CrossRefGoogle Scholar
  2. 2.
    Bertsekas DP (1999) Nonlinear programming. Athena Scientific Belmont, MAzbMATHGoogle Scholar
  3. 3.
    Castrodad A, Sapiro G (2012) Sparse modeling of human actions from motion imagery. Int J Comput Vis 100(1):1–15CrossRefGoogle Scholar
  4. 4.
    Chang CC, Lin CJ (2011) Libsvm: a library for support vector machines. ACM Transactions on Intelligent Systems and Technology (TIST) 2(3):27Google Scholar
  5. 5.
    Duda RO, Hart PE, Stork DG (2001) Pattern classification. A Wiley-Interscience:373–378Google Scholar
  6. 6.
    Elad M, Aharon M (2006) Image denoising via sparse and redundant representations over learned dictionaries. IEEE Trans Image Process 15(12):3736–3745MathSciNetCrossRefGoogle Scholar
  7. 7.
    Gao S, Tsang IW-H, Yi M (2014) Learning category-specific dictionary and shared dictionary for fine-grained image categorization. IEEE Trans Image Process 23 (2):623–634MathSciNetCrossRefGoogle Scholar
  8. 8.
    Georghiades AS, Belhumeur PN, Kriegman DJ (2001) From few to many: Illumination cone models for face recognition under variable lighting and pose. IEEE Transactions on Pattern Analysis and Machine Intelligence 23(6):643–660CrossRefGoogle Scholar
  9. 9.
    He X, Yan S, Yuxiao H, Niyogi P, Zhang H-J (2005) Face recognition using laplacianfaces. IEEE Transactions on Pattern Analysis and Machine Intelligence 27(3):328–340CrossRefGoogle Scholar
  10. 10.
    Ho J, Yang MH, Lim J, Lee KC, Kriegman D (2003) Clustering appearances of objects under varying illumination conditions. In: Proceedings of 16th CVPR, vol 1, pp 1–11Google Scholar
  11. 11.
    Lee H, Battle A, Raina R, Ng A (2006) Efficient sparse coding algorithms. In: Proceedings of Advances in neural information processing systems, pp 801–808Google Scholar
  12. 12.
    Liu B-D, Shen B, Li X (2015) Locality sensitive dictionary learning for image classification. In: Proceedings of the 22nd ICIPGoogle Scholar
  13. 13.
    Liu B-D, Shen B, Wang Y-X (2014) Class specific dictionary learning for face recognition. In: Proceedings of ICSPAC, pp 229–234Google Scholar
  14. 14.
    Liu B-D, Wang Y-X, Shen B, Zhang Y-J, Hebert M (2014) Self-explanatory sparse representation for image classification. In: Proceedings of the 13th ECCV 2014, pp 600–616Google Scholar
  15. 15.
    Liu B-D, Wang Y-X, Shen B, Zhang Y-J, Wang Y-J (2014) Blockwise coordinate descent schemes for sparse representation. In: Proceedings of the 39th ICASSP, pp 5304–5308Google Scholar
  16. 16.
    Liu B-D, Wang Y-X, Zhang Y-J, Shen B (2013) Learning dictionary on manifolds for image classification. Pattern Recogn 46(7):1879–1890CrossRefGoogle Scholar
  17. 17.
    Liu B-D, Wang Y-X, Zhang Y-J, Zheng Y (2012) Discriminant sparse coding for image classification. In: Proceedings of 37th ICASSP, pp 2193–2196Google Scholar
  18. 18.
    Mairal J, Ponce J, Sapiro G, Zisserman A, Bach FR (2009) Supervised dictionary learning. In: Proceedings of advances in neural information processing systems. MIT Press, pp 1033–1040Google Scholar
  19. 19.
    Martinez AM (1998) The ar face database. CVC Technical Report:24Google Scholar
  20. 20.
    Sim T, Baker S, Bsat M (2002) The cmu pose, illumination, and expression (pie) database. In: Proceedings of the 5th international conference on automatic face and gesture recognition , pp 46–51Google Scholar
  21. 21.
    Sprechmann P, Sapiro G (2010) Dictionary learning and sparse coding for unsupervised clustering. In: Proceedings of the 35th ICASSP, pp 2042–2045Google Scholar
  22. 22.
    Tao D, Li X, Xindong W, Maybank SJ (2009) Geometric mean for subspace selection. IEEE Trans Pattern Anal Mach Intel 31(2):260–274CrossRefGoogle Scholar
  23. 23.
    Tseng P (2001) Convergence of a block coordinate descent method for nondifferentiable minimization. J Optimiz Theory App 109(3):475–494MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Turk M, Pentland A (1991) Eigenfaces for recognition. J Cogn Neurosci 3 (1):71–86CrossRefGoogle Scholar
  25. 25.
    Wang C, Yan S, Zhang L, Zhang H (2009) Multi-label sparse coding for automatic image annotation. In: Proceedings of the 22nd CVPR, pp 1643–1650Google Scholar
  26. 26.
    Wang H, Yuan C, Weiming H, Sun C (2012) Supervised class-specific dictionary learning for sparse modeling in action recognition. Pattern Recognition 45 (11):3902–3911CrossRefGoogle Scholar
  27. 27.
    Wang Y-X, Gui L-Y, Zhang Y-J (2012) Neighborhood preserving non-negative tensor factorization for image representation. In: Proceedings of the 37th ICASSP, pp 3389–3392Google Scholar
  28. 28.
    Wang Y-X, Hebert M (2015) Model recommendation: generating object detectors from few samples. In: Proceedings of the 28th CVPR, pp 1619–1628Google Scholar
  29. 29.
    Wang Y-X, Hebert M (2016) Learned by transferring from unsupervised universal sources. In: Proceedings of the 30th AAAIGoogle Scholar
  30. 30.
    Wang Y-X, Zhang Y-J (2011) Image inpainting via weighted sparse non-negative matrix factorization. In: Proceedings of the 18th ICIP, pp 3409–3412Google Scholar
  31. 31.
    Wang Y-X, Zhang Y-J (2013) Nonnegative matrix factorization: a comprehensive review. IEEE Trans Knowl Data Eng 25(6):1336–1353CrossRefGoogle Scholar
  32. 32.
    Wright J, Yang AY, Ganesh A, Sastry S, Ma Y (2009) Robust face recognition via sparse representation. IEEE Trans Pattern Anal Mach Intel 31 (2):210–227CrossRefGoogle Scholar
  33. 33.
    Yan Y, Wang H, Suter D (2014) Multi-subregion based correlation filter bank for robust face recognition. Pattern Recognition 47(11):3487–3501CrossRefGoogle Scholar
  34. 34.
    Yang M, Zhang L, Feng X, Zhang D (2014) Sparse representation based fisher discrimination dictionary learning for image classification. Int J Comput Vis 109 (3):209–232MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Yang M, Zhang L, Yang J, Zhang D (2010) Metaface learning for sparse representation based face recognition. In: Proceedings of the 17th ICIP, pp 1601–1604Google Scholar
  36. 36.
    Zhang D, Yang M, Feng X (2011) Sparse representation or collaborative representation: which helps face recognition?. In: Proceedings of the 13th ICCV, pp 471–478Google Scholar
  37. 37.
    Zhang Q, Li B (2010) Discriminative k-svd for dictionary learning in face recognition. In: Proceedings of 23rd CVPR, pp 2691–2698Google Scholar
  38. 38.
    Zhao W, Chellappa R, Phillips JP, Rosenfeld A (2003) Face recognition: A literature survey. Acm Computing Surveys (CSUR) 35(4):399–458CrossRefGoogle Scholar
  39. 39.
    Zhou N, Yi S, Jinye P, Fan J (2012) Learning inter-related visual dictionary for object recognition. In: Proceedings of 25th CVPR, pp 3490–3497Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.College of Information and Control EngineeringChina University of PetroleumQingdaoChina
  2. 2.School of Computer ScienceCarnegie Mellon UniversityPittsburghUSA
  3. 3.Department of Computer SciencePurdue UniversityWest LafayetteUSA
  4. 4.Department of Electronic EngineeringTsinghua UniversityBeijingChina
  5. 5.Department of InformaticsKarlsruhe Institute of TechnologyKarlsruheGermany

Personalised recommendations