Multimedia Tools and Applications

, Volume 76, Issue 1, pp 631–648 | Cite as

Dynamic range expansion based on image statistics

Article

Abstract

As the dynamic range of displays keeps increasing, there is a need for reverse tone mapping methods, which aim at expanding the dynamic range of legacy low dynamic range images for viewing on higher dynamic range displays. While a number of strategies have been proposed, most of them are designed for well-exposed input images and are not optimal when dealing with ill-exposed (under- or over-exposed) content. Further, this type of content is more prone to artifacts which may arise when using local methods. In this work, we build on an existing, automatic, global reverse tone mapping operator based on a gamma expansion. We improve this method by providing a new way for automatic parameter calculation from the image statistics. We show that this method yields better results across the whole range of exposures.

Keywords

Reverse tone mapping Image processing Dynamic range 

References

  1. 1.
    Adams A (1983) The print. The Ansel Adams photography series. Little, Brown and CompanyGoogle Scholar
  2. 2.
    Akyuz AO, Reinhard E (2006) Color appearance in high dynamic range imaging. J Electron Imaging 15:3Google Scholar
  3. 3.
    Aydin TO, Mantiuk R, Myszkowski K, Seidel HP (2008) Dynamic range independent image quality assessment. ACM Trans Graph 27(3):69CrossRefGoogle Scholar
  4. 4.
    Banterle F, Artusi A, Aydin T, Didyk P, Eisemann E, Gutierrez D, Mantiuk R, Myszkowski K (2011) Multidimensional image retargeting. In: ACM Siggraph ASIA 2011 courses (December 2011). ACM Siggraph ASIA, ACMGoogle Scholar
  5. 5.
    Banterle F, Artusi A, Debattista K, Chalmers A (2011) Advanced high dynamic range imaging: theory and practice. A.K Peters, Ltd.Google Scholar
  6. 6.
    Banterle F, Ledda P, Debattista K, Chalmers A (2006) Inverse tone mapping. In: GRAPHITE ’06. ACM, New York pp 349–356Google Scholar
  7. 7.
    Banterle F, Ledda P, Debattista K, Chalmers A (2008) Expanding low dynamic range videos for high dynamic range applications. In: Proceedings of the spring conference on computer graphics. ACM, New YorkGoogle Scholar
  8. 8.
    Banterle F, Ledda P, Debattista K, Chalmers A, Bloj MA (2007) Framework for inverse tone mapping. Vis Comput 23(7):467–478CrossRefGoogle Scholar
  9. 9.
    Cadík M, Wimmer M, Neumann L, Artusi A (2008) Evaluation of hdr tone mapping methods using essential perceptual attributes. Comput Graph 32:330–349CrossRefGoogle Scholar
  10. 10.
    Didyk P, Mantiuk R, Hein M, Seidel H (2008) Enhancement of bright video features for HDR displays. Computer Graphics Forum 27(4):1265–1274CrossRefGoogle Scholar
  11. 11.
    Dumouchel W, O’Brien F (1991) Integrating a robust option into a multiple regression computing environment. Springer-Verlag, New York, pp 41–48Google Scholar
  12. 12.
    Eilertsen G, Wanat R, Mantiuk R, Unger J (2013) Evaluation of tone mapping operators for hdr-video. In: Computer graphics forum (Proc. of pacific graphics 2013), p 32Google Scholar
  13. 13.
    Fairchild MD The HDR photographic survey. http://rit-mcsl.org/fairchild/HDR.html
  14. 14.
    Kovaleski RP, Oliveira MM (2009) High-quality brightness enhancement functions for real-time reverse tone mapping. Vis Comput 25(5-7):539–547CrossRefGoogle Scholar
  15. 15.
    Kovaleski RP, Oliveira MM (2014) High-quality reverse tone mapping for a wide range of exposures. In: Proceedings of the conference on graphics, patterns and images (SIBGRAPI 2014), pp 49–56Google Scholar
  16. 16.
    Martin M, Fleming R, Sorkine O, Gutierrez D (2008) Understanding exposure for reverse tone mapping. In: Congreso español de informaticá graficá, pp 189–198Google Scholar
  17. 17.
    Masia B, Agustin S, Fleming RW, Sorkine O, Gutierrez D (2009) Evaluation of reverse tone mapping through varying exposure conditions. In: ACM transactions on graphics (Proc. of SIGGRAPH Asia), vol 28, pp 160:1–160:8Google Scholar
  18. 18.
    Masia B, Fleming RW, Sorkine O, Gutierrez D (2010) Selective reverse tone mapping. In: Congreso español de informatica grafica. EurographicsGoogle Scholar
  19. 19.
    Masia B, Wetzstein G, Didyk P, Gutierrez D (2013) A survey on computational displays: pushing the boundaries of optics, computation, and perception. Comput Graph 37(8):1012–1038CrossRefGoogle Scholar
  20. 20.
    Meylan L, Daly S, Süsstrunk S (2006) The reproduction of specular highlights on high dynamic range displays. In: IS & T/SID 14th color imaging conferenceGoogle Scholar
  21. 21.
    Meylan L, Daly S, Süsstrunk S (2007) Tone mapping for high dynamic range displays. In: Proc. IS & T/SPIE electronic imaging: human vision and electronic imaging XII, vol 6492Google Scholar
  22. 22.
    Reinhard E, Stark M, Shirley P, Ferwerda J (2002) Photographic tone reproduction for digital images. ACM Trans Graph 21(3):267–276CrossRefGoogle Scholar
  23. 23.
    Reinhard E, Ward G, Pattanaik S, Debevec P, Heidrich W, Myszkowski K (2010) High dynamic range imaging: acquisition, display, and image-based lighting, 2nd edn. Morgan, KaufmannGoogle Scholar
  24. 24.
    Rempel AG, Trentacoste M, Seetzen H, Young HD, Heidrich W, Whitehead L, Ward G (2007) Ldr2Hdr: on-the-fly reverse tone mapping of legacy video and photographs. ACM Trans Graph 26(3):39CrossRefGoogle Scholar
  25. 25.
    Seetzen H, Heidrich W, Stuerzlinger W, Ward G, Whitehead L, Trentacoste M, Ghosh A, Vorozcovs A (2004) High dynamic range display systems. ACM Trans Graph 23(3):760–768CrossRefGoogle Scholar
  26. 26.
    Steiger JH (2015) Introduction to multiple regression. http://www.statpower.net/Content/312/LectureegressionIntro.pdf. Accessed 08 Aug 2015

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Universidad de ZaragozaZaragozaSpain
  2. 2.MPI InformatikSaarbrueckenGermany

Personalised recommendations