Multimedia Tools and Applications

, Volume 76, Issue 1, pp 577–606 | Cite as

Authentication of images using Zernike moment watermarking

  • Hamid Shojanazeri
  • Wan Azizun Wan Adnan
  • Sharifah Mumtadzah Syed Ahmad
  • Somayeh Rahimipour
Article

Abstract

The rapid development of the Internet and digital image modification software has invited the illegal access to and use of digital images. In response, digital watermarking has emerged as a unique tool for protecting the authenticity of digital images. This technique involves the insertion of an imperceptible message within the media. This paper proposes a semi-fragile watermarking system using content-based techniques that address the challenge of image authentication. The proposed algorithm exploits the Zernike moments to authenticate an image and the Sobel edge map to perform tamper detection. The main contributions of this work are the establishment of an authentication algorithm that is robust against scaling, translation, noise pollution, rotation and JPEG compression, which are considered to be non-malicious modifications, while significantly decreasing the computational complexity using optimum orders of Zernike moments. In addition, this work addresses the challenge of capacity in terms of watermark insertion while preserving the visual quality of the image, where the capacity is increased almost three fold, as shown in the results. This process can successfully distinguish malicious attacks and reject modifications to watermarked images made through additions, replacements, and image cropping.

Keywords

Watermarking Image authentication Authentication Copyright protection Multimedia security Image watermarking 

References

  1. 1.
    Chan P, Lyu M, Chin R (2005) A novel scheme for hybrid digital video watermarking: approach, evaluation and experimentation. IEEE Trans Circuits Syst Video Technol 15(12):1638–1649CrossRefGoogle Scholar
  2. 2.
    Deng C, Gao X, Li X, Tao D (2009) A local tchebichef moments-based robust image watermarking. Signal Process 89(8):1531–1539CrossRefMATHGoogle Scholar
  3. 3.
    Eddins SL, Gonzalez R, Woods R (2004) Digital image processing using matlab. Princeton Hall Pearson Education Inc., New JerseyGoogle Scholar
  4. 4.
    Flusser J, Suk T, Zitov B, Ebrary I (2009) Moments and moment invariants in pattern recognition. Wiley Online LibraryGoogle Scholar
  5. 5.
    Fridrich J, Goljan M (2000) Robust hash functions for digital watermarking. In: Proceedings of the international conference on information technology: coding and computing, 2000. IEEE, pp 178–183Google Scholar
  6. 6.
    Hao Z, Li H, Yu P (2009) Semi-fragile watermarking technique for image tamper localization. In: International conference on measuring technology and mechatronics automation, 2009. ICMTMA’09. IEEE, pp 519–523Google Scholar
  7. 7.
    Hongmei L, Xinzhi Y, Jiwu H (2010) Semi-fragile zernike moment-based image watermarking for authentication. In: EURASIP journal on advances in signal processing, vol 2010Google Scholar
  8. 8.
    Hsieh S, Tsai I, Yeh C, Chang C (2011) An image authentication scheme based on digital watermarking and image secret sharing. Multimed Tools Appl 52(2):597–619CrossRefGoogle Scholar
  9. 9.
    Hu Y, Han D (2005) Using two semi-fragile watermark for image authentication. In: Proceedings of international conference on machine learning and cybernetics, 2005. IEEE, vol 9, pp 5484–5489Google Scholar
  10. 10.
    Jayanthi V, Rajamani V, Karthikayen P (2011) Performance analysis for geometrical attack on digital image watermarking. Int J Electron 98(11):1565–1580CrossRefGoogle Scholar
  11. 11.
    Kang H, Park J (2003) A semi-fragile watermarking using jnd. In: Proceedings of STEG, pp 127–131Google Scholar
  12. 12.
    Kao C, Chang L (2009) Zernike moments and edge features based semi-fragile watermark for image authentication with tampering localization. In Proceedings of APSIPA ASC 2009. APSIPA ASCGoogle Scholar
  13. 13.
    Khotanzad A, Hong YH (1990) Invariant image recognition by zernike moments. IEEE Trans Pattern Anal Mach Intell 12(5):489–497CrossRefGoogle Scholar
  14. 14.
    Kim W-Y, Kim Y-S (2000) A region-based shape descriptor using zernike moments. Signal Process Image Commun 16(1):95–102MathSciNetCrossRefGoogle Scholar
  15. 15.
    Li G, Pei S, Chen G, Cao W, Wu B (2009) A self-embedded watermarking scheme based on relationship function of corresponding inter-blocks dct coefficient. In: 13th international conference on computer supported cooperative work in design, 2009. IEEE, pp 107–112Google Scholar
  16. 16.
    Li C, Zhang A, Liu Z, Liao L, Huang D (2014) Semi-fragile self-recoverable watermarking algorithm based on wavelet group quantization and double authentication. Multimedia tools and applications , pp 1–24Google Scholar
  17. 17.
    Li J, Li X, Yang B, Sun X (2015) Segmentation-based image copy-move forgery detection scheme. IEEE Trans Inf Forensics Secur 10(3):507–518CrossRefGoogle Scholar
  18. 18.
    Lin C, Chang S (2000) Semifragile watermarking for authenticating jpeg visual content. In: Electronic Imaging. International Society for Optics and Photonics, pp 140–151Google Scholar
  19. 19.
    Lin E, Podilchuk C, Delp III E (2000) Detection of image alterations using semifragile watermarks. In: Electronic imaging. International society for optics and photonics, pp 152–163Google Scholar
  20. 20.
    Lin C, Wu M, Bloom J, Cox I, Miller M, Lui Y (2001) Rotation, scale, and translation resilient watermarking for images. IEEE Trans Image Process 10 (5):767–782CrossRefMATHGoogle Scholar
  21. 21.
    Liu H, Lin J, Huang J (2005) Image authentication using content based watermark. In: IEEE international symposium on circuits and systems, 2005. ISCAS 2005. IEEE, pp 4014–4017Google Scholar
  22. 22.
    Liu H, Rao J, Yao X (2008) Feature based watermarking scheme for image authentication. In: IEEE international conference on multimedia and expo, 2008. IEEE, pp 229–232Google Scholar
  23. 23.
    Maeno K, Sun Q, Chang S, Suto M (2006) New semi-fragile image authentication watermarking techniques using random bias and nonuniform quantization. IEEE Trans Multimedia 8(1):32–45CrossRefGoogle Scholar
  24. 24.
    Misiti M, Misiti Y, Oppenheim G, Poggi J (1996) Wavelet toolbox. The MathWorks Inc., NatickMATHGoogle Scholar
  25. 25.
    Ouyang B (2010) Watermarking based on unified pattern recognition framework. Ph.D. dissertation, Southern Methodist UniversityGoogle Scholar
  26. 26.
    Petitcolas FA (2000) Watermarking schemes evaluation. IEEE Signal Process Mag 17(5):58–64CrossRefGoogle Scholar
  27. 27.
    Qin C, Chang C-C, Chen P-Y (2012) Self-embedding fragile watermarking with restoration capability based on adaptive bit allocation mechanism. Signal Process 92(4):1137–1150CrossRefGoogle Scholar
  28. 28.
    Qin C, Chang C-C, Tsou P-L (2013) Robust image hashing using non-uniform sampling in discrete fourier domain. Digital Signal Process 23(2):578–585MathSciNetCrossRefGoogle Scholar
  29. 29.
    Ruanaidh J, Pun T (1998) Rotation, scale and translation invariant spread spectrum digital image watermarking. Signal Process 66(3):303–317CrossRefMATHGoogle Scholar
  30. 30.
    Singh P, Agarwal S (2015) An efficient fragile watermarking scheme with multilevel tamper detection and recovery based on dynamic domain selection. Multimedia tools and applications, pp 1–30Google Scholar
  31. 31.
    Shojanazeri H, Adnan WAW, Ahmad SMS (2013) Video watermarking techniques for copyright protection and content authentication. IJCISIM 5:652–660Google Scholar
  32. 32.
    Teague M (1980) Image analysis via the general theory of moments . JOSA 70(8):920–930MathSciNetCrossRefGoogle Scholar
  33. 33.
    Tsai M, Yu K, Chen Y (2000) Joint wavelet and spatial transformation for digital watermarking. IEEE Trans Consum Electron 46(1):237CrossRefGoogle Scholar
  34. 34.
    Tsougenis E, Papakostas G, Koulouriotis D, Tourassis V (2012) Performance evaluation of moment-based watermarking methods: a review. Journal of Systems and SoftwareGoogle Scholar
  35. 35.
    Wallin Å, Kubler O (1995) Complete sets of complex zernike moment invariants and the role of the pseudoinvariants. IEEE Trans Pattern Anal Mach Intell 17(11):1106–1110CrossRefGoogle Scholar
  36. 36.
    Wang X, Yang Y, Yang H (2010) Invariant image watermarking using multi-scale harris detector and wavelet moments. Comput Electr Eng 36(1):31–44CrossRefMATHGoogle Scholar
  37. 37.
    Xin Y, Liao S, Pawlak M (2007) Circularly orthogonal moments for geometrically robust image watermarking. Pattern Recogn 40(12):3740–3752CrossRefMATHGoogle Scholar
  38. 38.
    Zhou X, Duan X, Wang D (2004) A semifragile watermark scheme for image authentication. In: Proceeding of 10th international conference on multimedia modelling, 2004. IEEE, pp 374–377Google Scholar
  39. 39.
    Zhaoqian G, Fei G, Cheng S (2012) Implementation of dwt domain-video watermarking fast algorithm in blackfin dsp. Mechanical engineering and technology, pp 773–778Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Hamid Shojanazeri
    • 1
  • Wan Azizun Wan Adnan
    • 2
  • Sharifah Mumtadzah Syed Ahmad
    • 2
  • Somayeh Rahimipour
    • 2
  1. 1.Department of Computer and Communication System EngineeringUniversity Putra MalaysiaSerdangMalaysia
  2. 2.University Putra MalaysiaSerdangMalaysia

Personalised recommendations