Multimedia Tools and Applications

, Volume 75, Issue 22, pp 14507–14524 | Cite as

Evaluate mobile video quality in hybrid spatial and temporal domain

  • Chao Chen
  • Wen Ji
  • Seungmin Rho
  • Bo-Wei Chen
  • Yiqiang Chen
Article

Abstract

Mobile video quality assessment plays an essential role in multimedia systems and services. In the case of scalable video coding, which enables dynamic adaptation based on terminal capabilities and heterogeneous network, variable resolution is one of the most prominent types of video distortions. In this paper, we propose a new hybrid spatial and temporal distortion metric for evaluating video streaming quality with variable spatio-temporal resolution. The key idea is to project video sequence into feature domain and calculate the distortion of content information from the projected principal component matrix and its eigenvectors. This metric can measures the degree of content information degradation especially in spatio-temporal resolution scalable video. The performance of the proposed metric is evaluated and compared to some state-of-the-art quality evaluation metrics in the literature. Our results show that the proposed metric achieves good correlations with the subjective evaluations of the EPFL scale video database.

Keywords

Multimedia Scalable video Signal processing 

References

  1. 1.
    Chan C, Wee S, Apostolopoulos J (2008) Multiple distortion measures for packetized scalable media. IEEE Trans Multimed 10(8):1671–1686CrossRefGoogle Scholar
  2. 2.
    Chandler DM, Hemami SS (2007) Vsnr: A wavelet-based visual signal-to-noise ratio for natural images. IEEE Trans Image Process 16(9):2284–2298MathSciNetCrossRefGoogle Scholar
  3. 3.
    Ji W, Li Z (2010) Joint layered video and digital fountain coding for multi-channel video broadcasting. Conf ACM Multimedia 2010:1223–1226Google Scholar
  4. 4.
    Ji W, Li Z, Chen Y (2011) Joint scalable video and digital fountain coding for heterogeneous qos video broadcasting. In: Multimedia and Expo (ICME), 2011 IEEE International Conference on , pp 1–6Google Scholar
  5. 5.
    Lee J-S, Simone FD, Ramzan N, Zhao Z, Kurutepe E, Sikora T, Ostermann J, Izquierdo E, Ebrahimi T (2010) Subjective evaluation of scalable video coding for content distribution. In: Proceedings of the ACM Multimedia, pp 65–72Google Scholar
  6. 6.
    Li Z, SGM, Katsaggelos A, B G (2005) Rate-distortion optimal video summary generation. IEEE Trans Image Process 14(10):1550–1560CrossRefGoogle Scholar
  7. 7.
    Pinson MH, Wolf S (2004) A new standardized method for objectively measuring video quality. IEEE Trans Broadcasting 50(3):312–322CrossRefGoogle Scholar
  8. 8.
    R. I.-T. J.249, Perceptual video quality measurement techniques for digital cable television in the presence of a reduced reference, 2010Google Scholar
  9. 9.
    Schwarz H, Wiegand D (2007) Overview of the scalable video coding extension of the h.264/avc standard. IEEE Trans Circuits Syst Video Technol 17(9):1103–1120CrossRefGoogle Scholar
  10. 10.
    Segal A Study of upsampling/down-sampling for spatial scalability. Joint Video Team, Doc.JVT-Q083Google Scholar
  11. 11.
    Segall C, Sullivan G (2007) Spatial scalability within the h.264/avc scalable video coding extension. IEEE Trans Circuits Syst Video Technol 17(9):1121–1135CrossRefGoogle Scholar
  12. 12.
    Seshadrinathan K, Bovik A (2010) Motion tuned spatio-temporal quality assessment of natural videos. IEEE Trans Image Process 19(2):335–350MathSciNetCrossRefGoogle Scholar
  13. 13.
    Sheikh H, Bovik A, de Veciana G (2005) An information fidelity criterion for image quality assessment using natural scene statistics. IEEE Trans Image Process 14 (12):2117–2128CrossRefGoogle Scholar
  14. 14.
    Sohn H, Yoo H, Neve WD, Kim CS, Ro YM (2010) Full-reference video quality metric for fully scalable and mobile svc content. IEEE Trans Broadcast 56(3):269–280CrossRefGoogle Scholar
  15. 15.
    Sun S, Reichel J Ahg report on spatial scalability resampling. Joint Video Team, Doc.JVT-R006Google Scholar
  16. 16.
    VQEG (2003) Final Report from the Video Quality Experts Group on the Validation of Objective Quality Metrics for Video Quality Assessment, [Online]. Available: http://www.its.bldrdoc.gov/vqeg/projects/frtv-phase-ii/frtv-phase-ii.aspx
  17. 17.
    Vranjes D, Vranjes M, Rimac-Drlje S (2013) Spatial upscaling of scalable coded video for mobile applications. In: ELMAR, 2013 55th International Symposium, pp 287–290Google Scholar
  18. 18.
    Wang L, Zhang Y, Feng J (2005) On the euclidean distance of images. IEEE Trans. Pattern Anal Mach Intell 27(8):1334–1339CrossRefGoogle Scholar
  19. 19.
    Wang Y, van der Schaar M, Chang S-F, Loui A (2005) Classification-based multidimensional adaptation prediction for scalable video coding using subjective quality evaluation. IEEE Trans Circuits Syst Video Technol 15(10):1270–1279CrossRefGoogle Scholar
  20. 20.
    Wang Z, Simoncelli EP, Bovik AC (2003) Multi-scale structural similarity for image quality assessment. In: IEEE Asilomar Conference on Signals, Systems, and Computers, pp 9–12Google Scholar
  21. 21.
    Wang Z, Bovik A, Sheikh H, Simoncelli E (2004) Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process 13(4):600–612CrossRefGoogle Scholar
  22. 22.
    Winkler S (2005) Digital video quality-vision models and metrics. WileyGoogle Scholar
  23. 23.
    Wulf S, Zolzer U (2013) The impact of temporal pooling and spatio-temporal quality interaction on the prediction accuracy of video quality metrics. Signal Processing Algorithms, Architectures, Arrangements, and Applications (SPA):26–31Google Scholar
  24. 24.
    Xue Y, Erkin B, Yao W (2015) A novel no-reference video quality metric for evaluating temporal jerkiness due to frame freezing. IEEE Trans Multimed 17(1):134–139CrossRefGoogle Scholar
  25. 25.
    Yang X, Lin W, Lu Z, Ong E, Yao S (2005) Just noticeable distortion model and its applications in video coding. SPIC 20(7):662–680Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Chao Chen
    • 1
  • Wen Ji
    • 1
  • Seungmin Rho
    • 2
  • Bo-Wei Chen
    • 3
  • Yiqiang Chen
    • 1
  1. 1.Beijing Key Laboratory of Mobile Computing and Pervasive DeviceInstitute of Computing Technology, Chinese Academy of SciencesBeijingChina
  2. 2.Department of MultimediaSungkyul UniversityAnyangSouth Korea
  3. 3.Department of Electrical EngineeringPrinceton UniversityPrincetonUSA

Personalised recommendations