Multimedia Tools and Applications

, Volume 76, Issue 3, pp 4035–4054 | Cite as

Ant colony learning method for joint MCS and resource block allocation in LTE Femtocell downlink for multimedia applications with QoS guarantees



With the emergence of bandwidth-intensive online mobile multimedia applications in wireless networks, in order to make mobile users enjoy better Quality of Service (QoS) under the conditions of limited resources, efficient radio spectrum resource allocation schemes are always desirable. This paper addresses the problem of joint Resource Block (RB) allocation and Modulation-and-Coding Scheme (MCS) selection in LTE femtocell DownLink (DL) for mobile multimedia applications. We first formulate the problem as an Integer Linear Program (ILP) whose objective is to minimize the number of allocated RBs of a closed femtocell, while guaranteeing minimum throughput for each user. In view of the NP-hardness of the ILP, we then propose an intelligent optimization learning algorithm called ACO-HM algorithm with reduced polynomial time complexity. The Ant Colony Optimization (ACO) learning algorithm exhibits better performance in machine learning and supports parallel search for the RB allocation, while the Harmonic Mean (HM) method is to select a more appropriate MCS than the MINimum/MAXimum MCS selection schemes (MIN/MAX). Simulation results show that compared with the ACO-MIN algorithm and the ACO-MAX algorithm, the proposed ACO-HM learning algorithm achieves better performance with fewer RBs and better QoS guarantees.


Femtocell Modulation and coding scheme Resource block QoS guarantees 


  1. 1.
    3GPP (2009) TS25.467 (V 9.0.0): UTRAN architecture for 3G Home Node B (HNB)Google Scholar
  2. 2.
    3GPP (2009) TS25.468 (V9.0.0): UTRAN iuh interference RANAP User Adaption (RUA) SignalingGoogle Scholar
  3. 3.
    3GPP (2010) TS25.469 (V9.1.0): UTRAN Iuh Interference Home Node B (HNB) Application Part (HNBAP) SignalingGoogle Scholar
  4. 4.
    Ahmadi H, Chew Y (2010) Subcarrier-and-bit allocation in multiclass multiuser single-cell OFDMA systems using an ant colony optimization based evolutionary algorithm. In: Proceedings of IEEE WCNC, pp 1–5Google Scholar
  5. 5.
    Ahmadi H, Chew YH, Chai CC (2011) Multicell multiuser OFDMA dynamic resource allocation using ant colony optimization. In: Proceedings of IEEE VTC Spring, pp 1–5Google Scholar
  6. 6.
    Alexiou A, Bouras C, Kokkinos V, Papazois A, Tsichritzis G (2010) Efficient MCs selection for mbsfn transmissions over LTE networks. In: Proceedings of IEEE Wireless Days (WD), pp 1–5Google Scholar
  7. 7.
    Andrews J, Claussen H, Dohler M, Rangan S, Reed M (2012) Femtocells: past, present, and future. Proc IEEE JSAC 30(3):497–508Google Scholar
  8. 8.
    Baig AR, Shahzad WJ (2012) A correlation-based ant miner for classification rule discovery. Neural Comput & Applic 21(2):219–235CrossRefGoogle Scholar
  9. 9.
    Bochrini S, Bouras C (2013) Efficient MCS selection mechanisms for multicasting over LTE networks. In: Proceedings of IEEE WMNC, pp 1–8Google Scholar
  10. 10.
    Chen X, Si Y, Xiang X (2015) Delay-bounded resource allocation for femtocells exploiting the statistical multiplexing gain. In: Proceedings of Springer SupercomputingGoogle Scholar
  11. 11.
    Daly R, Shen Q (2014) Learning bayesian network equivalence classes with ant colony optimization. Eprint Arxiv 35(4):391–447MathSciNetMATHGoogle Scholar
  12. 12.
    Dorigo M, Birattari M, Stiiutzle T (2006) Ant colony optimization. IEEE Comput Intell Mag 1(4):28–39CrossRefGoogle Scholar
  13. 13.
    Estrada R, Otrok H, Dziong Z (2013) Resource allocation model based on particle swarm optimization for OFDMA macro-femtocell networks. In: Proceedings of IEEE Advanced Networks and Telecommuncations Systems (ANTS), pp 1–6Google Scholar
  14. 14.
    Fajardo JO, Taboada I, Liberal F (2014) Qoe-driven and network-aware adaptation capabilities in mobile multimedia applications. Proc Springer Multimedia Tools Appl 70(1):311–332CrossRefGoogle Scholar
  15. 15.
    Fan J, Yin Q, Li G (2011) MCS selection for throughput improvement in downlink LTE systems. In: Proceedings of IEEE ICCCN, pp 1–5Google Scholar
  16. 16.
    Francis J, Mehta N (2013) Eesm-based link adaptation in OFDM: modeling and analysis. In: Proceedings of IEEE GLOBECOM, pp 3703–3708Google Scholar
  17. 17.
    Kim J, Cho DH (2010) A joint power and subchannel allocation scheme maximizing system capacity in indoor dense mobile communication systems. Proc IEEE TVT 59(9):4340–4353Google Scholar
  18. 18.
    Kim R, Kwak JS, Etemad K (2009) WiMAX femtocell: requirements, challenges, and solutions. IEEE Commun Mag 47(9):84–91CrossRefGoogle Scholar
  19. 19.
    Ksairi N, Bianchi P, Ciblat P, Hachem W (2010) Resource allocation for downlink cellular OFDMA systems—part i: optimal allocation. Proc IEEE TSP 58(2):720–734Google Scholar
  20. 20.
    Lai WS, Chiang ME, Lee SC, Lee TS (2013) Game theoretic distributed dynamic resource allocation with interference avoidance in cognitive femtocell networks. In: Proceedings of IEEE Wireless Communications and Networking Conference (WCNC), pp 3364–3369Google Scholar
  21. 21.
    Lee C, Huang JH (2010) Distributed channel selection principles for femtocells with two-tier interference. In: Proceedings of IEEE VTC, pp 1–5Google Scholar
  22. 22.
    Li L, Chen X, Xiang X (2014) An intelligent optimization algorithm for joint MCs and resource block allocation in LTE femtocell downlink with QoS guarantees. In: Proceedings of 2014 5th International Conference on Game Theory for Networks (GAMENETS), pp 1–6Google Scholar
  23. 23.
    Li Z, Guo S, Li W, Lu S, Chen D, Leung V (2012) A particle swarm optimization algorithm for resource allocation in femtocell networks. In: Proceedings of IEEE Wireless Communications and Networking Conference (WCNC), pp 1212–1217Google Scholar
  24. 24.
    Lin CP, Chen HL, Leu JS (2013) Modeling and evaluating iptv applications in wimax networks. Proc Springer Multimedia Tools Appl 67(3):641–666CrossRefGoogle Scholar
  25. 25.
    Liu D, Zhang H, Zheng W, Wen X (2012) The sub-channel allocation algorithm in femtocell networks based on ant colony optimization. In: Proceedings of IEEE MILCOM, pp 1–6Google Scholar
  26. 26.
    López-Pérez D, Chu X, Vasilakos AV, Claussen H (2013) On distributed and coordinated resource allocation for interference mitigation in self-organizing LTE networks. IEEE/ACM Trans Networking 21(4):1145–1158CrossRefGoogle Scholar
  27. 27.
    Malik S, Moon S, Kim B, Kim CH, Kim D, Hwang I (2014) Novel MCS based relay protocols for throughput optimization using AMC in LTE-Advanced system. In: Proceedings of 47th HICSS, pp 5114–5121Google Scholar
  28. 28.
    Marshoud H, Otrok H, Barada H, Estrada R, Dziong Z (2013) Genetic algorithm based resource allocation and interference mitigation for OFDMA macrocell-femtocells networks. In: Proceedings of IEEE WMNC, pp 1–7Google Scholar
  29. 29.
    Marshoud H, Otrok H, Barada H, Estrada R, Jarray A, Dziong Z (2012) Resource allocation in macrocell-femtocell network using genetic algorithm. In: Proceedings of IEEE Wireless and Mobile Computing, Networking and Communications (WiMob), pp 474–479Google Scholar
  30. 30.
    Mhiri F, Ben Reguiga K, Bouallegue R, Pujolle G (2011) A power management algorithm for green femtocell networks. In: The 10th IFIP Annual Mediterranean in Ad Hoc Networking Workshop (Med-Hoc-Net), pp 45–49Google Scholar
  31. 31.
    Muñoz-Medina O, Agustin A, Vidal J (2012) MCS and sub-band selection for downlink interference coordination in LTE-A femtocells. In: Proceedings of IEEE VTC Fall, pp 1–5Google Scholar
  32. 32.
    Pedemonte M, Nesmachnow S, Cancela H (2011) A survey on parallel ant colony optimization. Elsevier Appl Soft Comput 11(8):5181–5197CrossRefGoogle Scholar
  33. 33.
    Siddavaatam R, Anpalagan A, Woungang I (2013) Ant colony optimization based sub-channel allocation algorithm for small cell HetNets. In: Proceedings of Springer Wireless Personal Communications, pp 1–22Google Scholar
  34. 34.
    Song H, Kwan R, Zhang J (2011) Approximations of eesm effective SNR distribution. Proc IEEE TCOM 59(2):603–612Google Scholar
  35. 35.
    Wang Y, Yu M, Li J, Meng K (2012) Stochastic game net and applications in security analysis for enterprise network. Proc Int J Inf Secur 11(1):41–52CrossRefGoogle Scholar
  36. 36.
    Zhang H, Zheng W, Chu X (2012) Joint subchannel and power allocation in interference-limited OFDMA femtocells with heterogeneous QoS guarantee. In: Proceedings of IEEE Global Communications Conference (GLOBECOM), pp 4572–4577Google Scholar
  37. 37.
    Zhang J, Zhang Z, Luo H (2011) Joint subchannel, rate and power allocation in ofdma-based cognitive wireless mesh network. Proc Springer Wirel Pers Commun 57 (4):501–520CrossRefGoogle Scholar
  38. 38.
    Zhu H, Wang J (2012) Chunk-based resource allocation in OFDMA systems—part ii: joint chunk, power and bit allocation. Proc IEEETCOM 60(2):499–509Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Computer SchoolBeijing Information Science and Technology UniversityBeijingChina
  2. 2.Department of Computer Science and TechnologyUniversity of Science and Technology BeijingBeijingChina

Personalised recommendations