Multimedia Tools and Applications

, Volume 75, Issue 23, pp 15763–15778

Compressed video matching: Frame-to-frame revisited

  • Saddam Bekhet
  • Amr Ahmed
  • Amjad Altadmri
  • Andrew Hunter
Article

Abstract

This paper presents an improved frame-to-frame (F-2-F) compressed video matching technique based on local features extracted from reduced size images, in contrast with previous F-2-F techniques that utilized global features extracted from full size frames. The revised technique addresses both accuracy and computational cost issues of the traditional F-2-F approach. Accuracy is improved through using local features, while computational cost issue is addressed through extracting those local features from reduced size images. For compressed videos, the DC-image sequence, without full decompression, is used. Utilizing such small size images (DC-images) as a base for the proposed work is important, as it pushes the traditional F-2-F from off-line to real-time operational mode. The proposed technique involves addressing an important problem: namely the extraction of enough local features from such a small size images to achieve robust matching. The relevant arguments and supporting evidences for the proposed technique are presented. Experimental results and evaluation, on multiple challenging datasets, show considerable computational time improvements for the proposed technique accompanied by a comparable or higher accuracy than state-of-the-art related techniques.

Keywords

F-2-F matching Compressed domain Local features Trajectories SIFT MPEG DC-image 

References

  1. 1.
    Abbass A, Youssif A, Ghalwash A (2012) Compressed domain video fingerprinting technique using the singular value decomposition. In: Proceedings of applied informatics and computing theoryGoogle Scholar
  2. 2.
    Abdel-Hakim AE, Farag AA (2006) Csift: A sift descriptor with color invariant characteristics. In: Computer Vision and Pattern Recognition, 2006 IEEE Computer Society Conference on, vol. 2, 1978–1983Google Scholar
  3. 3.
    Adjeroh DA, Lee MC, King I (1998) A distance measure for video sequence similarity matching. In: multi-media database management systems, 1998. Proceedings. International workshop on, 72– 79Google Scholar
  4. 4.
    Almeida J, Leite NJ, da S Torres R (2011) Comparison of video sequences with histograms of motion patterns. In: IEEE international conference on image processing, 3673–3676Google Scholar
  5. 5.
    Altadmri A, Ahmed A (2009) Video databases annotation enhancing using commonsense knowledgebases for indexing and retrievalGoogle Scholar
  6. 6.
    Altadmri A, Ahmed A (2013) A framework for automatic semantic video annotation. Multimed Tools Appl 64(3):1–25Google Scholar
  7. 7.
    Bannour H, Hlaoua L, el Ayeb B (2009) Survey of the adequate descriptor for content-based image retrieval on the web: Global versus local features. In: Conference en recherche d’Information et applications (CORIA’09), 445–456Google Scholar
  8. 8.
    Bekhet S, Ahmed A, Hunter A, et al. (2013) Video matching using dc-image and local features. Lect Notes Eng Comput Sci 3:2209–2214Google Scholar
  9. 9.
    Dimitrova N, Abdel-Mottaleb MS (1999) Video retrieval of mpeg compressed sequences using dc and motion signatures. Video retrieval of MPEG compressed sequences using DC and motion signaturesGoogle Scholar
  10. 10.
    Droueche Z, Lamard M, Cazuguel G, Quellec G, Roux C, Cochener B (2012) Content-based medical video retrieval based on region motion trajectories. In: Proceedings of international federation for medical and biological engineering, 622–625. SpringerGoogle Scholar
  11. 11.
    Gao HP, qiao Yang Z (2010) Content based video retrieval using spatiotemporal salient objects. In: International symposium on? Intelligence information processing and trusted computing (IPTC), 689–692Google Scholar
  12. 12.
    Hua XS, Chen X, Zhang HJ (2004) Robust video signature based on ordinal measure. In: International conference on image processing (ICIP ’04), vol. 1, 685–688 Vol. 1Google Scholar
  13. 13.
    Karpenko A, Aarabi P (2011) Tiny videos: A large data set for nonparametric video retrieval and frame classification. IEEE Trans Pattern Anal Mach Intell 33(3):618–630CrossRefGoogle Scholar
  14. 14.
    Kogler M, del Fabro M, Lux M, Schoffmann K, Boszormenyi L (2009) Global vs. local feature in video summarization: Experimental results. In: 10th international workshop of the multimedia metadata community on semantic multimedia database technologies. SeMuDaTeGoogle Scholar
  15. 15.
    Liu J, Luo J, Shah M (2009) Recognizing realistic actions from videos in the wild. In: IEEE Conference on Computer Vision and Pattern Recognition(CVPR ’9), 1996–2003. IEEEGoogle Scholar
  16. 16.
    Lowe DG (2004) Distinctive image features from scale-invariant keypoints. Int J Comput Vis 60(2):91–110CrossRefGoogle Scholar
  17. 17.
    Mikolajczyk K, Schmid C (2003) A performance evaluation of local descriptors. In: Computer Vision and Pattern Recognition, 2003. Proceedings. 2003 IEEE Computer Society Conference on, vol. 2, II–257–II–263 vol.2Google Scholar
  18. 18.
    Ng CW, King I, Lyu MR (2001) Video comparison using tree matching algorithm. In: Proceedings of The International Conference on Imaging Science, Systems, and Technology, vol. 1, 184– 190Google Scholar
  19. 19.
    Over P, Awad GM, Fiscus J, Antonishek B, Michel M, Smeaton AF, Kraaij W, Qunot G (2011) Trecvid 2010 an overview of the goals, tasks, data, evaluation mechanisms and metricsGoogle Scholar
  20. 20.
    Shan MK, Lee SY (1998) Content-based video retrieval based on similarity of frame sequence. In: Multi-media database management systems, 1998. Proceedings. International workshop on, 90–97. IEEEGoogle Scholar
  21. 21.
    TrecVid (2011) Trec video retrival task, bbc ruch 2005 (1-02-2011)., http://www.nplpir.nist.gov/projects/trecvid
  22. 22.
    Yeo BL, Liu B (1995) On the extraction of dc sequence from mpeg compressed video. In: Image Processing, 1995. Proceedings., International conference on, vol. 2, 260–263. IEEEGoogle Scholar
  23. 23.

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Saddam Bekhet
    • 1
  • Amr Ahmed
    • 1
  • Amjad Altadmri
    • 2
  • Andrew Hunter
    • 1
  1. 1.University of LincolnLincolnUK
  2. 2.School of ComputingUniversity of KentKent CT2 7NFUK

Personalised recommendations