Multimedia Tools and Applications

, Volume 75, Issue 17, pp 10561–10581 | Cite as

Simple gait parameterization and 3D animation for anonymous visual monitoring based on augmented reality

  • Piotr SzczukoEmail author


The article presents a method for video anonymization and replacing real human silhouettes with virtual 3D figures rendered on a screen. Video stream is processed to detect and to track objects, whereas anonymization stage employs animating avatars accordingly to behavior of detected persons. Location, movement speed, direction, and person height are taken into account during animation and rendering phases. This approach requires a calibrated camera, and utilizes results of visual object tracking. A procedure for transforming objects visual features and bounding boxes into gait parameters for animated figures is presented. Conclusions and future work perspectives are provided.


Visual monitoring Gait Privacy Augmented reality Computer animation 



This work has been partially funded by the ARTEMIS Joint Undertaking and the Polish National Centre of Research and Development as a part of the COPCAMS project ( under Grant Agreement No. 332913.


  1. 1.
    Anders MJ (2010) Blender 2.49 scripting. Packt PublishingGoogle Scholar
  2. 2.
    Atrey PK, El Saddik A, Kankanhalli MS (2011) Effective multimedia surveillance using a human-centric approach. Multimedia Tools Appl 51(2):697–721CrossRefGoogle Scholar
  3. 3.
    Ballan L, Bertini M, Del Bimbo A, Seidenari L, Serra G (2011) Event detection and recognition for semantic annotation of video. Multimedia Tools Appl 51(1):279–302CrossRefGoogle Scholar
  4. 4.
    Benmokhtar R (2014) Robust human action recognition scheme based on high-level feature fusion. Multimedia Tools Appl 69(2):253–275CrossRefGoogle Scholar
  5. 5.
    Biovision Hierarchy, Accessed 20 August 2015
  6. 6.
    Bratt B (2011) Rotoscoping: Techniques and Tools for the Aspiring Artist. Focal Press, Burlington, MAGoogle Scholar
  7. 7.
    Cederberg JN (2001) Projective geometry. A course in modern geometries, Undergraduate Texts in Mathematics, 213–313. SpringerGoogle Scholar
  8. 8.
    Cichowski J, Czyzewski A (2011) Reversible video stream anonymization for video surveillance systems based on pixels relocation and watermarking. Computer Vision Workshops (ICCV Workshops), 2011 I.E. International Conference. 1971–1977Google Scholar
  9. 9.
    Czyżewski A, Szwoch G, Dalka P, Szczuko P, Ciarkowski A, Ellwart D, Merta T, Łopatka K, Kulasek Ł, Wolski J (2011) Multi-stage video analysis framework. In: Lin W (ed) Video surveillance, Chapter 9, 145–171. IntechGoogle Scholar
  10. 10.
    Dalka P (2006) Detection and segmentation of moving vehicles and trains using gaussian mixtures, Shadow detection and morphological processing. Mach Graph Vis 15(3/4):339–348Google Scholar
  11. 11.
    Dalka P, Szwoch G, Szczuko P, Czyżewski A et al (2010) Video content analysis in the urban area telemonitoring system. In: Tsihrintzis GA (ed) Multimedia services in inteligent environments. Springer, Berlin, pp 241–261CrossRefGoogle Scholar
  12. 12.
    Deutscher J, Blake A, Reid ID (2000) Articulated body motion capture by annealed particle filtering. In: Proc. IEEE Conf. on Computer Vision and Pattern Recognition, 126–133Google Scholar
  13. 13.
    Gao T, Li G, Lian S, Zhang J (2012) Tracking video objects with feature points based particle filtering. Multimedia Tools Appl 58(1):1–21CrossRefGoogle Scholar
  14. 14.
    Ghazal M, Vázquez C, Amer A (2012) Real-time vandalism detection by monitoring object activities. Multimedia Tools Appl 58(3):585–611CrossRefGoogle Scholar
  15. 15.
    Goffredo M, Bouchrika I, Carter JN, Nixon MS (2010) Performance analysis for automated gait extraction and recognition in multi-camera surveillance. Multimedia Tools Appl 50(1):75–94CrossRefGoogle Scholar
  16. 16.
    Guo C, Liu D, Guo Y, Sun Y (2014) An adaptive graph cut algorithm for video moving objects detection. Multimedia Tools Appl 72(3):2633–2652CrossRefGoogle Scholar
  17. 17.
    Höferlin B, Höferlin M, Weiskopf D, Heidemann G (2011) Information-based adaptive fast-forward for visual surveillance. Multimedia Tools Appl 55(1):127–150CrossRefGoogle Scholar
  18. 18.
    Hu W, Tan T, Wang L, Maybank S (2004) A survey on visual surveillance of object motion and behaviors. IEEE Trans Syst Man Cybern 34:334–352CrossRefGoogle Scholar
  19. 19.
    ITU-T recommendation P.800 (1996) Methods for subjective determination of transmission quality ( Accessed 20 August 2015
  20. 20.
    Kakadiaris I, Metaxas D (2000) Model-based estimation of 3D human motion. IEEE Tran Pattern Anal Mach Intell 22(12):1453–1459CrossRefGoogle Scholar
  21. 21.
    Kehl R, Van Gool L (2006) Markerless tracking of complex human motions from multiple views. Comput Vis Image Underst 104(2–3):190–209CrossRefGoogle Scholar
  22. 22.
    Kotus J, Dalka P, Szczodrak M, Szwoch G, Szczuko P, Czyżewski A (2013) Multimodal surveillance based personal protection system. Signal processing: algorithms, architectures, arrangements, and applications (SPA), 100–105, PoznanGoogle Scholar
  23. 23.
    Kotus J, Łopatka K, Czyżewski A (2014) Detection and localization of selected acoustic events in acoustic field for smart surveillance applications. Multimedia Tools Appl 68(1):5–21CrossRefGoogle Scholar
  24. 24.
    Kriechbaum A, Mörzinger R, Thallinger G (2010) A framework for unsupervised mesh based segmentation of moving objects. Multimedia Tools Appl 50:7–28CrossRefGoogle Scholar
  25. 25.
    Krolewski J, Gawrysiak P (2011) The mobile personal augmented reality navigation system. Man Mach Interact 2. SpringerGoogle Scholar
  26. 26.
    Lalos C, Voulodimos A, Doulamis A, Varvarigou T (2014) Efficient tracking using a robust motion estimation technique. Multimedia Tools Appl 69(2):277–292CrossRefGoogle Scholar
  27. 27.
    Laveau S, Faugeras O (1996) Oriented projective geometry for computer vision. Computer vision ECCV. Lect Notes Comput Sci 1064:147–156CrossRefGoogle Scholar
  28. 28.
    Lavee G, Khan L, Thuraisingham B (2007) A framework for a video analysis tool for suspicious event detection. Multimedia Tools Appl 35(1):109–123CrossRefGoogle Scholar
  29. 29.
    Moeslund TB, Hilton A, Kruger V (2006) A survey of advances in vision-based human motion capture and analysis. Comput Vis Image Underst 104:90–126CrossRefGoogle Scholar
  30. 30.
    Moshkovitz M (2000) The virtual studio: technology and techniques. Focal PressGoogle Scholar
  31. 31.
    Mullen T (2012) Mastering blender. SybexGoogle Scholar
  32. 32.
    Novaes RD, Dourado VZ (2011) Usual gait speed assessment in middle-aged and elderly Brazilian subjects. Braz J Phys Ther 15(2):117–122. doi: 10.1590/S1413-35552011000200006. Accessed 20 August 2015
  33. 33.
    Ntalianis K-S, Doulamis A-D, Tsapatsoulis N, Doulamis N (2010) Human action annotation, modeling and analysis based on implicit user interaction. Multimedia Tools Appl 50:199–225CrossRefGoogle Scholar
  34. 34.
    PETS (2006) Bemchmark Data, IEEE conference on computer vision and pattern recognition 2006,, 2006. Accessed 20 August 2015
  35. 35.
    Roth R, Koller-Meier E, Van Gool L (2010) Multi-object tracking evaluated on sparse events. Multimedia Tools Appl 50:29–47CrossRefGoogle Scholar
  36. 36.
    Rumiński D, Walczak K (2013) Creation of interactive AR content on mobile devices. Business Information Systems Workshops. SpringerGoogle Scholar
  37. 37.
    Samangooei S, Nixon MS (2010) Performing content-based retrieval of humans using gait biometrics. Multimedia Tools Appl 49(1):195–212CrossRefGoogle Scholar
  38. 38.
    Schreer O, Kauff P, Sikora T (2005) (Eds) 3D Videocommunication: algorithms, concepts and real-time systems in human centred communication. WileyGoogle Scholar
  39. 39.
    Simon C, Meessen J, De Vleeschouwer C (2010) Visual event recognition using decision trees. Multimedia Tools Appl 50(1):95–121CrossRefGoogle Scholar
  40. 40.
    Szczuko P (2011) Hierarchical estimation of human upper body based on 2D observation utilizing evolutionary programming and “Genetic memory”. Multimedia communications, services and security. Commun Comput Inf Sci 149:82–90CrossRefGoogle Scholar
  41. 41.
    Szczuko P (2014) Genetic programming extension to APF-based monocular human body pose estimation. Multimedia Tools Appl 68:177–192CrossRefGoogle Scholar
  42. 42.
    Szwoch G, Dalka P (2011) Layered background modeling for automatic detection of unattended objects in camera images. WIAMIS 2011: 12th International Workshop on Image Analysis for Multimedia Interactive Services, Preprint No. 50, DelftGoogle Scholar
  43. 43.
    Szwoch G, Dalka P, Ciarkowski A, Szczuko P, Czyzewski A (2011) Visual object tracking system employing fixed and PTZ cameras. J Intell Decis Technol 5(2):177–188, Accessed 20 August 2015
  44. 44.
    Szwoch G, Dalka P, Czyżewski A (2013) Spatial calibration of a dual PTZ-fixed camera system for tracking moving objects in video. J Imaging Sci Technol 57(2):1–10CrossRefGoogle Scholar
  45. 45.
    Tavli B, Bicakci K, Zilan R, Barcelo-Ordinas JM (2012) A survey of visual sensor network platforms. Multimedia Tools Appl 60(3):689–726CrossRefGoogle Scholar
  46. 46.
    Tsai RY (1987) A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf tv cameras and lenses. IEEE J Robot Autom 3(4):323–344CrossRefGoogle Scholar
  47. 47.
    University of Maryland, Guide to Authoring Media Ground Truth with ViPER-GT, on-line tutorial, Accessed 20 August 2015
  48. 48.
    Uustal H, Baerga E (2004) Gait analysis. In: Cuccurullo S (ed) Physical medicine and rehabilitation board review. Demos Medical Publishing, New YorkGoogle Scholar
  49. 49.
    Wikitude, Augmented Reality platform documentation, on-line source, Accessed 20 August 2015

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Faculty of Electronics, Telecommunications, and InformaticsGdansk University of TechnologyGdanskPoland

Personalised recommendations