Advertisement

Multimedia Tools and Applications

, Volume 75, Issue 18, pp 11267–11289 | Cite as

Skip block based distributed source coding for hyperspectral image compression

  • Masoodhu Banu N.MEmail author
  • Sujatha S
  • Al-Sakib Khan Pathan
Article

Abstract

Due to the involvement of massive amount of information in processing and transmission operations, reduction of encoder complexity is a key requirement for lossy compression methods of hyperspectral images. Distributed Source Coding (DSC) is the enabling technology which reverses the encoder-decoder complexity and provides error resilience. In this work, for complexity reduction, the adaptability of block based design to spatially varying characteristics is exploited and combined with DSC. Blocks of size 8x8 with Mean Absolute Error (MeanAE) less than 3.0 and Maximum Absolute Error (MaxAE) less than 4 are identified and skipped from coding, and the remaining portion has been 2D (2-Dimensional) DCT (Discrete Cosine Transform)/SPIHT (Set Partitioning in Hierarchical Trees) coded. Skip block based DSC scheme results in variable source statistics and this is handled with rate adaptive Low Density Parity Check (LDPC) codes. This new block based algorithm, together with rate adaptive codes results in better compression with reduced coding complexity. Our experimental results show that skip block based DSC coded scheme, in addition to being very flexible, retains all the desirable features of compared well-known algorithms. This is also highly competitive to 3D-SPIHT, and better than 2D SPIHT both in terms of compression efficiency and classification.

Keywords

Distributed source coding Entropy Hyperspectral Rate Spectral Syndrome Wavelet 

Notes

Acknowledgments

This work was partially supported in part by Networking and Distributed Computing Laboratory (NDC Lab.), KICT, IIUM, Malaysia.

References

  1. 1.
    Abrardo A, Barni M, Magli E, Nencini F (2010) Error-resilient and low-complexity onboard lossless compression of hyperspectral images by means of distributed source coding. IEEE Trans Geosci Remote Sens 48(4):1892–1904CrossRefGoogle Scholar
  2. 2.
    Ahmed T, Wei X, Ahmed S, Pathan A-SK (2013) Efficient and effective automated surveillance agents using kernel tricks. Simul Trans Soc Model Simul Int 89(5):562–577CrossRefGoogle Scholar
  3. 3.
    AVIRIS Images Available at: http://aviris.jpl.nasa.gov/. Accessed 27 June 2014
  4. 4.
    Banu NMM, Sasikumar S (2014) A doping bits based BP decoding for rateless distributed source coding applications. J Electr Comput Eng Hindawi 2014, 467628. doi: 10.1155/2014/467628, 9Google Scholar
  5. 5.
    Cheung N-M and Ortega A (2006) An efficient and highly parallel hyperspectral imagery compression scheme based on distributed source coding. Fortieth Asilomar Conf Signals Syst Comput (ACSSC ′06), Oct. 29 2006-Nov. 1 pp. 1892–1896Google Scholar
  6. 6.
    Christophe E, Léger D and Mailhes C (2004) Comparison and evaluation of quality criteria for hyperspectral imagery, image quality and system performance II. Edited by Rasmussen, Rene; Miyake, Yoichi. Proceedings of the SPIE, volume 5668, pp. 204–213Google Scholar
  7. 7.
    Christophe E, Mailhes C, Duhamel P (2008) Hyperspectral image compression: adapting SPIHT and EZW to anisotropic 3-D wavelet coding. IEEE Trans Image Process 17(12):2334–2346MathSciNetCrossRefGoogle Scholar
  8. 8.
    Dragotti PL, Poggi G, Ragozini ARP (2000) Compression of multispectral images by three-dimensional SPIHT algorithm. IEEE Trans Geosci Remote Sens 38(1):416–428CrossRefGoogle Scholar
  9. 9.
    Du Q, Fowler JE (2007) Hyperspectral image compression using JPEG2000 and principal component analysis. IEEE Geosci Remote Sens Lett 4(2):201–205CrossRefGoogle Scholar
  10. 10.
    Eckford AW and Wei Yu (2005) Rateless Slepian-Wolf codes, the thirty-ninth asilomar conference on signals, systems and computers, October 28 - November 1, pp. 1757–1761Google Scholar
  11. 11.
    He D-k, Jagmohan A, Lu L, Sheinin V (2008) Wyner-Ziv video compression using rateless LDPC codes. Proc SPIE 6822 Visual Commun Image Process 2008, 68221U. doi: 10.1117/12.766699 Google Scholar
  12. 12.
    Huo C, Zhang R, Yin D (2012) Compression technique for compressed sensing hyperspectral images. Int J Remote Sens 33(5):1586–1604CrossRefGoogle Scholar
  13. 13.
    Jiang J, He D, Jagmohan A (2007) Rateless slepian-woif coding based on rate adaptive low-density-parity-check codes. IEEE Int Symp Inf Theory 24–29:1316–1320Google Scholar
  14. 14.
    Liu L, He D-K, Jagmohan A, Lu L and Delp EJ (2008) A low-complexity iterative mode selection algorithm for Wyner-Ziv video compression. IEEE Int Conf Image Process pp. 1136–1139Google Scholar
  15. 15.
    Magli E, Barni M, Abrardo A, Grangetto M (2007) Distributed source coding techniques for lossless compression of hyperspectral images. EURASIP J Adv Signal Process 2007, 045493. doi: 10.1155/2007/45493 MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Magli E, Barni M, Abrardo A and Grangetto M. Applying distributed source coding principles to remote sensing image compression. Available at: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.106.984. Accessed 28 June 2014
  17. 17.
    Martín G, González-Ruiz V, Plaza A, Ortiz JP, Garcia I (2010) Impact of JPEG2000 compression on endmember extraction and unmixing of remotely sensed hyperspectral data. J Appl Remote Sens 4(1):041796. doi: 10.1117/1.3474975 CrossRefGoogle Scholar
  18. 18.
    Mielikainen J (2006) Lossless compression of hyperspectral images using lookup tables. IEEE Signal Process Lett 13(3):157–160CrossRefGoogle Scholar
  19. 19.
    Mielikainen J, Toivanen P (2008) Lossless compression of hyperspectral images using a quantized index to lookup tables. IEEE Geosci Remote Sens Lett 5(3):474–478CrossRefGoogle Scholar
  20. 20.
    Monitoring Vegetation from Space. Available at: http://www.eumetrain.org/data/3/36/navmenu.php?page=2.4.0. Accessed 11 February 2015
  21. 21.
    Nian Y, He M, Wan J (2013) Low-Complexity Compression Algorithm for Hyperspectral Images Based on Distributed Source Coding”. Mathematical Problems in Engineering 2013, 825673. doi: 10.1155/2013/825673, 7 pagesMathSciNetzbMATHGoogle Scholar
  22. 22.
    Pan X, Liu R, Lv X (2012) Low-complexity compression method for hyperspectral images based on distributed source coding. IEEE Geosci Remote Sens Lett 9(2):224–227CrossRefGoogle Scholar
  23. 23.
    Penna B, Tillo T, Magli E, Olmo G (2006) Progressive 3-D coding of hyperspectral images based on JPEG 2000. IEEE Geosci Remote Sens Lett 3(1):125–129CrossRefGoogle Scholar
  24. 24.
    Pizzolante R, Carpentier B (2012) Visualization, band ordering and compression of hyperspectral images. Algoritm 5:76–97. doi: 10.3390/a5010076 CrossRefGoogle Scholar
  25. 25.
    Qian S-E, Hollinger AB, Williams D, Manak D (2000) Vector quantization using spectral index-based multiple sub codebooks for hyperspectral data compression. IEEE Trans Geosci Remote Sens 38(3):1183–1190CrossRefGoogle Scholar
  26. 26.
    Slepian D, Wolf JK (1973) Noiseless coding of correlated information sources. IEEE Trans Inf Theory 19(4):471–480MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    SPIHT Image Compression. Available at: http://www.cipr.rpi.edu/research/SPIHT/spiht3.html. Accessed 27 June 2014
  28. 28.
    Tang X, Pearlman WA, Modestino JW (2003) Hyperspectral image compression using three-dimensional wavelet coding. Proc SPIE T Electron Imaging 5022:1037–1047CrossRefGoogle Scholar
  29. 29.
    Varodayan D, Aaron A and Girod B (2005) Rate-adaptive distributed source coding using low-density parity-check codes, the thirty-ninth asilomar conference on signals, systems and computers, October 28 - November 1, pp. 1203–1207Google Scholar
  30. 30.
    Wei X, Fan J, Chen M, Ahmed T, Pathan A-SK (2013) SMART: a subspace based malicious peers detection algorithm for P2P systems. Int J Commun Netw Inf Secur 5(1):1–9Google Scholar
  31. 31.
    Wu J, Jiang K, Fang Y, Jiao L and Shi G (2009) Hyperspectral image compression using distributed source coding and 3D SPECK, Proc. SPIE 7494, MIPPR 2009: Multispectr Image Acquis Process 74940Z. doi: 10.1117/12.833599
  32. 32.
    Wu J, Jiang K, Fang Y and Jiao L (2009) Hyperspectral image compression based on the framework of DSC using 3D-wavelet and LDPC. Proc. SPIE 7455 Satell Data Compression Commun Process V 745513. doi: 10.1117/12.825466
  33. 33.
    Wyner AD, Ziv J (1976) The rate-distortion function for source coding with side information at the decoder. IEEE Trans Inf Theory 22(1):1–10MathSciNetzbMATHCrossRefGoogle Scholar
  34. 34.
    Xiong Z, Guleryuz OG, Orchard MT (1996) A DCT-based embedded image coder. IEEE Signal Proc Lett 3(11):289–290CrossRefGoogle Scholar
  35. 35.
    Yu C, Sharma G (2013) Improved low-density parity check accumulate (LDPCA) codes. IEEE Trans Commun 61(9):3590–3599CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Masoodhu Banu N.M
    • 1
    Email author
  • Sujatha S
    • 2
  • Al-Sakib Khan Pathan
    • 3
  1. 1.Department of Electronics and Communication EngineeringSethu Institute of TechnologyVirudhunagarIndia
  2. 2.Department of Computer ApplicationsAnna University Regional Engineering CollegeTrichyIndia
  3. 3.Department of Computer ScienceInternational Islamic University MalaysiaKuala LumpurMalaysia

Personalised recommendations