Multimedia Tools and Applications

, Volume 75, Issue 22, pp 14867–14893 | Cite as

A novel magic LSB substitution method (M-LSB-SM) using multi-level encryption and achromatic component of an image

  • Khan Muhammad
  • Muhammad Sajjad
  • Irfan Mehmood
  • Seungmin Rho
  • Sung Wook Baik


Image Steganography is a thriving research area of information security where secret data is embedded in images to hide its existence while getting the minimum possible statistical detectability. This paper proposes a novel magic least significant bit substitution method (M-LSB-SM) for RGB images. The proposed method is based on the achromatic component (I-plane) of the hue-saturation-intensity (HSI) color model and multi-level encryption (MLE) in the spatial domain. The input image is transposed and converted into an HSI color space. The I-plane is divided into four sub-images of equal size, rotating each sub-image with a different angle using a secret key. The secret information is divided into four blocks, which are then encrypted using an MLE algorithm (MLEA). Each sub-block of the message is embedded into one of the rotated sub-images based on a specific pattern using magic LSB substitution. Experimental results validate that the proposed method not only enhances the visual quality of stego images but also provides good imperceptibility and multiple security levels as compared to several existing prominent methods.


Cryptography Information security LSB Multi-level encryption Steganography Secret key 


  1. 1.
    Ahmad J, Sajjad M, Mehmood I, Rho S, Baik S W (2015) Describing Colors, Textures and Shapes for Content Based Image Retrieval-A Survey. arXiv preprint arXiv:1502.07041 Google Scholar
  2. 2.
    Al-Taani AT, Al-Issa AM (2009) A novel steganographic method for gray-level images. Int J Comput Inform Syst Sci Eng 3:1 2009Google Scholar
  3. 3.
    Amirtharajan R, Archana P, Rajesh V, Devipriya G, Rayappan J (2013) Standard deviation converges for random image steganography. In: Information & Communication Technologies (ICT), 2013 I.E. Conference on. pp 1064–1069Google Scholar
  4. 4.
    Amirtharajan R, Behera S K, Swarup M A, Rayappan J B B (2010) Colour guided colour image steganography. arXiv preprint arXiv:1010.4007 Google Scholar
  5. 5.
    Amirtharajan R, Mahalakshmi V, Nandhini J, Kavitha R, Rayappan J (2013) Key decided cover for random image steganography. Res J Inf Technol 5:171–180Google Scholar
  6. 6.
    Anees A, Siddiqui AM, Ahmed J, Hussain I (2014) A technique for digital steganography using chaotic maps. Nonlinear Dyn 75:807–816CrossRefGoogle Scholar
  7. 7.
    Bailey K, Curran K (2006) An evaluation of image based steganography methods. Multimedia Tools Appl 30:55–88CrossRefGoogle Scholar
  8. 8.
    Chan C-K, Cheng L-M (2004) Hiding data in images by simple LSB substitution. Pattern Recogn 37:469–474CrossRefMATHGoogle Scholar
  9. 9.
    Chang C-C, Hsiao J-Y, Chan C-S (2003) Finding optimal least-significant-bit substitution in image hiding by dynamic programming strategy. Pattern Recogn 36:1583–1595CrossRefGoogle Scholar
  10. 10.
    Cheddad A, Condell J, Curran K, Mc Kevitt P (2010) Digital image steganography: survey and analysis of current methods. Signal Process 90:727–752CrossRefMATHGoogle Scholar
  11. 11.
    Chen W-Y (2008) Color image steganography scheme using DFT, SPIHT codec, and modified differential phase-shift keying techniques. Appl Math Comput 196:40–54MathSciNetMATHGoogle Scholar
  12. 12.
    Chen W-J, Chang C-C, Le T (2010) High payload steganography mechanism using hybrid edge detector. Expert Syst Appl 37:3292–3301CrossRefGoogle Scholar
  13. 13.
    Cheng W-C, Pedram M (2004) Chromatic encoding: a low power encoding technique for digital visual interface. Consum Electron IEEE Trans 50:320–328CrossRefGoogle Scholar
  14. 14.
    Dumitrescu S, Wu X, Wang Z (2003) Detection of LSB steganography via sample pair analysis. Signal Process IEEE Trans 51:1995–2007CrossRefMATHGoogle Scholar
  15. 15.
    Fakhredanesh M, Rahmati M, Safabakhsh R (2013) Adaptive image steganography using contourlet transform. J Electron Imaging 22:043007CrossRefGoogle Scholar
  16. 16.
    Fang Y, Zeng K, Wang Z, Lin W, Fang Z, Lin C-W (2014) Objective quality assessment for image retargeting based on structural similarity. IEEE J Emerg Sel Top Circ Syst 4:95–105CrossRefGoogle Scholar
  17. 17.
    Ghasemi E, Shanbehzadeh J, Fassihi N (2012) High Capacity Image Steganography Based on Genetic Algorithm and Wavelet Transform. In: Intelligent Control and Innovative Computing. Springer. pp 395–404Google Scholar
  18. 18.
    Grover N, Mohapatra A (2013) Digital Image Authentication Model Based on Edge Adaptive Steganography. In: Advanced Computing, Networking and Security (ADCONS), 2013 2nd International Conference on. pp 238–242Google Scholar
  19. 19.
    Gutub AA-A (2010) Pixel indicator technique for RGB image steganography. J Emerg Technol Web Intell 2:56–64Google Scholar
  20. 20.
    Gutub A, Ankeer M, Abu-Ghalioun M, Shaheen A, Alvi A (2008) Pixel indicator high capacity technique for RGB image based Steganography. In: WoSPA 2008–5th IEEE International Workshop on Signal Processing and its Applications. pp 1–3Google Scholar
  21. 21.
    Hamid N, Yahya A, Ahmad RB, Al-Qershi OM (2012) Image steganography techniques: an overview. Int J Comput Sci Secur (IJCSS) 6:168–187Google Scholar
  22. 22.
    Hong W (2013) Adaptive image data hiding in edges using patched reference table and pair-wise embedding technique. Inf Sci 221:473–489CrossRefGoogle Scholar
  23. 23.
    Hong W, Chen T-S (2012) A novel data embedding method using adaptive pixel pair matching. Inform Forensic Secur IEEE Trans 7:176–184CrossRefGoogle Scholar
  24. 24.
    Huang F, Li B, Huang J (2007) Attack LSB matching steganography by counting alteration rate of the number of neighbourhood gray levels. In: Image Processing, 2007. ICIP 2007. IEEE International Conference on. pp I-401-I-404Google Scholar
  25. 25.
    Ioannidou A, Halkidis ST, Stephanides G (2012) A novel technique for image steganography based on a high payload method and edge detection. Expert Syst Appl 39:11517–11524CrossRefGoogle Scholar
  26. 26.
    Jan Z, Mirza AM (2012) Genetic programming-based perceptual shaping of a digital watermark in the wavelet domain using Morton scanning. J Chin Inst Eng 35:85–99CrossRefGoogle Scholar
  27. 27.
    Jassim F A (2013) A novel steganography algorithm for hiding text in image using five modulus method. arXiv preprint arXiv:1307.0642 Google Scholar
  28. 28.
    Kanan HR, Nazeri B (2014) A novel image steganography scheme with high embedding capacity and tunable visual image quality based on a genetic algorithm. Expert Syst Appl 41:6123–6130CrossRefGoogle Scholar
  29. 29.
    Karim M (2011) A new approach for LSB based image steganography using secret key. In: 14th International Conference on Computer and Information Technology (ICCIT 2011). pp 286–291Google Scholar
  30. 30.
    Ker A D (2005) A general framework for structural steganalysis of LSB replacement. In: Information Hiding. pp 296–311Google Scholar
  31. 31.
    Ker AD (2005) Steganalysis of LSB matching in grayscale images. Signal Proc Lett IEEE 12:441–444CrossRefGoogle Scholar
  32. 32.
    Laaksonen J, Koskela M, Laakso S, Oja E (2000) PicSOM–content-based image retrieval with self-organizing maps. Pattern Recogn Lett 21:1199–1207CrossRefMATHGoogle Scholar
  33. 33.
    Lee Y-P, Lee J-C, Chen W-K, Chang K-C, Su I-J, Chang C-P (2012) High-payload image hiding with quality recovery using tri-way pixel-value differencing. Inf Sci 191:214–225CrossRefGoogle Scholar
  34. 34.
    Liao X, Shu C (2015) Reversible data hiding in encrypted images based on absolute mean difference of multiple neighboring pixels. J Vis Commun Image RepresentGoogle Scholar
  35. 35.
    Lin C-C, Tsai W-H (2004) Secret image sharing with steganography and authentication. J Syst Softw 73:405–414CrossRefGoogle Scholar
  36. 36.
    Lou D-C, Liu J-L (2002) Steganographic method for secure communications. Comput Secur 21:449–460CrossRefGoogle Scholar
  37. 37.
    Luo W, Huang F, Huang J (2010) Edge adaptive image steganography based on LSB matching revisited. Inform Forensic Secur IEEE Trans 5:201–214CrossRefGoogle Scholar
  38. 38.
    Mielikainen J (2006) LSB matching revisited. Signal Proc Lett IEEE 13:285–287CrossRefGoogle Scholar
  39. 39.
    Muhammad K, Ahmad J, Farman H, Zubair M (2014) A novel image steganographic approach for hiding text in color images using HSI color model. Middle-East J Sci Res 22:647–654Google Scholar
  40. 40.
    Parvez MT, Gutub AA-A (2011) Vibrant color image steganography using channel differences and secret data distribution. Kuwait J Sci Eng 38:127–142Google Scholar
  41. 41.
    Parvez M T, Gutub A -A (2008) RGB intensity based variable-bits image steganography. In: Asia-Pacific Services Computing Conference, 2008. APSCC’08. IEEE. pp 1322–1327Google Scholar
  42. 42.
    Qazanfari K, Safabakhsh R (2013) High-capacity method for hiding data in the discrete cosine transform domain. J Electron Imaging 22:043009CrossRefGoogle Scholar
  43. 43.
    Qazanfari K, Safabakhsh R (2014) A new steganography method which preserves histogram: generalization of LSB<sup>++</sup> Inf Sci 277:90–101MathSciNetCrossRefGoogle Scholar
  44. 44.
    Raja K, Kumar K, Kumar S, Lakshmi M, Preeti H, Venugopal K et al (2007) Genetic algorithm based steganography using wavelets. In: Information Systems Security. Springer, pp 51–63Google Scholar
  45. 45.
    Muhammad K, Ahmad J, Rehman NU, Jan Z, Qereshi RJ (2014) A secure cyclic steganographic technique for color images using randomization. Tech J Univ Eng Technol Taxila Pakistan 19:57–64Google Scholar
  46. 46.
    Roy R, Sarkar A, Changder S (2013) Chaos based edge adaptive image steganography. Procedia Technol 10:138–146CrossRefGoogle Scholar
  47. 47.
    Sajjad M, Ejaz N, Mehmood I, Baik S W (2013) Digital image super-resolution using adaptive interpolation based on Gaussian function. Multimedia Tools Appl: 1–17Google Scholar
  48. 48.
    Sajjad M, Ejaz N, Baik S W (2012) Multi-kernel based adaptive interpolation for image super-resolution. Multimedia Tools Appl: 1–23Google Scholar
  49. 49.
    Sajjad M, Mehmood I, Baik SW (2014) Sparse representations-based super-resolution of Key-frames extracted from frames-sequences generated by a visual sensor network. Sensors 14:3652–3674CrossRefGoogle Scholar
  50. 50.
    Sajjad M, Mehmood I, Baik SW (2015) Image super-resolution using sparse coding over redundant dictionary based on effective image representations. J Vis Commun Image Represent 26:50–65CrossRefGoogle Scholar
  51. 51.
    Swain G, Lenka SK (2012) A novel approach to RGB channel based image steganography technique. Int Arab J e-Technol 2:181–186Google Scholar
  52. 52.
    Thien C-C, Lin J-C (2003) A simple and high-hiding capacity method for hiding digit-by-digit data in images based on modulus function. Pattern Recogn 36:2875–2881CrossRefMATHGoogle Scholar
  53. 53.
    Wang R-Z, Lin C-F, Lin J-C (2001) Image hiding by optimal LSB substitution and genetic algorithm. Pattern Recogn 34:671–683CrossRefMATHGoogle Scholar
  54. 54.
    Wang C-M, Wu N-I, Tsai C-S, Hwang M-S (2008) A high quality steganographic method with pixel-value differencing and modulus function. J Syst Softw 81:150–158CrossRefGoogle Scholar
  55. 55.
    Westfeld A, Pfitzmann A (2000) Attacks on steganographic systems. In: Information Hiding. pp 61–76Google Scholar
  56. 56.
    Wu D-C, Tsai W-H (2003) A steganographic method for images by pixel-value differencing. Pattern Recogn Lett 24:1613–1626CrossRefMATHGoogle Scholar
  57. 57.
    Wu H-C, Wu N-I, Tsai C-S, Hwang M-S (2005) Image steganographic scheme based on pixel-value differencing and LSB replacement methods. IEE Proc Vis Image Signal Process 152:611–615CrossRefGoogle Scholar
  58. 58.
    Yang C-H, Weng C-Y, Wang S-J, Sun H-M (2008) Adaptive data hiding in edge areas of images with spatial LSB domain systems. Inform Forensic Secur IEEE Trans 3:488–497CrossRefGoogle Scholar
  59. 59.
    Zhang W, Zhang X, Wang S (2007) A double layered “plus-minus one” data embedding scheme. Signal Proc Lett IEEE 14:848–851CrossRefGoogle Scholar
  60. 60.
    Zhou W, Bovik AC, Sheikh HR, Simoncelli EP (2004) Image quality assessment: from error visibility to structural similarity. Image Proc IEEE Trans 13:600–612CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Khan Muhammad
    • 1
  • Muhammad Sajjad
    • 2
  • Irfan Mehmood
    • 1
  • Seungmin Rho
    • 3
  • Sung Wook Baik
    • 1
  1. 1.Digital Contents Research InstituteSejong UniversitySeoulKorea
  2. 2.Department of Computer ScienceIslamia College PeshawarPeshawarPakistan
  3. 3.Department of MultimediaSungkyul UniversityAnyangKorea

Personalised recommendations