Multimedia Tools and Applications

, Volume 75, Issue 12, pp 7129–7157 | Cite as

Reversible watermarking based on two embedding Schemes

  • Shaowei WengEmail author
  • Jeng-Shyang Pan


Two different embedding schemes are presented in this paper. One aims to increase rate-distortion performance at low embedding rates. It will increase performance at low embedding rates from the following three main aspects: 1) a local variance-controlled mechanism, 2) a better predictor and 3) a new embedding scheme which can decrease the number of the pixels to be modified on the basis of providing a certain embedding capacity. Since the first scheme is only to provide low embedding rate with high visual quality, another scheme is designed to achieve higher embedding rate with good visual quality. In the second scheme, the center pixel of a three-pixel set is the prediction of a pixel, and thus any modification to it is meaningless. Each three-pixel set contains two differences. Based on the fact that the center pixel can not be modified, the remaining two pixels must be modified so that both of difference are shifted by 1. For instance, if both of pixels can carry 1-bit watermark and to-be-embedded bits are both 1, then two pixels must be shifted left or right by 1. Since we can not shift two difference by modifying only the center pixel, the distortion is high. To decrease distortion, the possibility that two bits are both equal to 1 is discarded in this paper. Experimental results also demonstrate the proposed method is effective.


Reversible watermarking Two embedding Schemes Local variance-controlled mechanism High-performance predictor Embedding strategy 



This work was supported in part by National NSF of China (No. 61201393, No. 61272498, No. 61001179), New Star of Pearl River on Science and Technology of Guangzhou (No. 2014J2200085).


  1. 1.
    Alattar AM (2003) Reversible watermark using difference expansion of triplets. In: Proceedings of the International Conference Image Process, vol 1, pp 501–504Google Scholar
  2. 2.
    Alattar AM (2004) Reversible watermark using difference expansion of quads. In: Proceedings of the IEEE Conference Acoustics, Speech, Signal Process, vol 3, pp 377–380Google Scholar
  3. 3.
    Alattar AM (2004) Reversible watermark using the difference expansion of a generalized integer transform. IEEE Trans Image Process 13(8):1147–1156MathSciNetCrossRefGoogle Scholar
  4. 4.
    Celik MU, Sharma G, Tekalp AM, Saber E (2005) Lossless generalized-lsb data embedding. IEEE Trans Image Process 12(2):157–160Google Scholar
  5. 5.
    Coatrieux G, Guillou CL, Cauvin JM, Roux C (2009) Reversible watermarking for knowledge digest embedding and reliability control in medical images. IEEE Trans Inf Technol Biomed 13(2):158– 165CrossRefGoogle Scholar
  6. 6.
    Coltuc D (2011) Improved embedding for prediction-based reversible watermarking. IEEE Trans Inf Forensic Secur 6(3):873–882CrossRefGoogle Scholar
  7. 7.
    Coltuc D (2012) Low distortion transform for reversible watermarking. IEEE Trans Image Process 21(1):412–417MathSciNetCrossRefGoogle Scholar
  8. 8.
    Coltuc D, Chassery JM (2007) Very fast watermarking by reversible contrast mapping. IEEE Signal Process Lett 14(4):255–258CrossRefGoogle Scholar
  9. 9.
    Fridrich J, Goljan M, Du R (2002) Lossless data embedding-new paradigm in digital watermarking. In: EURASIP Journal of Applied Signal Process, vol 2002, pp 185–196Google Scholar
  10. 10.
    Hong W (2010) An efficient prediction-and-shifting embedding technique for high quality reversible data hiding. EURASIP J Adv Signal ProcessGoogle Scholar
  11. 11.
    Hong W (2012) Adaptive reversible data hiding method based on error energy control and histogram shifting. Opt Commun 285(2):101–108CrossRefGoogle Scholar
  12. 12.
    Hong W, Chen T, Wu M (2013) An improved human visual system based reversible data hiding method using adaptive histogram modification. Opt Commun 291:87–97CrossRefGoogle Scholar
  13. 13.
    Hong W, Chen TS, Shiu CW (2009) Reversible data hiding for high quality images using modification of prediction errors. J Syst Softw 82(11):1833–1842CrossRefGoogle Scholar
  14. 14.
    Honsinger CW, Jones P, Rabbani PM, Stoffe JC (2001) Lossless recovery of an original image containing embedded data. US patent: 6278791WGoogle Scholar
  15. 15.
    Hu Y, Lee HK, Li J (2009) DE-based reversible data hiding with improved overflow location map. IEEE Trans Circuits Syst Video Technol 19(2):250–260CrossRefGoogle Scholar
  16. 16.
    Kamstra L, Heijmans HJAM (2005) Reversible data embedding into images using wavelet technique and sorting. IEEE Trans Image Process 14(12):2082–2090MathSciNetCrossRefGoogle Scholar
  17. 17.
    Li XL, Li J, Li B, Yang B (2013) High-fidelity reversible data hiding scheme based on pixel-value-ordering and prediction-error expansion. Signal Process 93 (1):198–205CrossRefGoogle Scholar
  18. 18.
    Li XL, Yang B, Zeng TY (2011) Efficient reversible watermarking based on adaptive prediction-errorexpansion and pixel selection. IEEE Trans Image Process 20(12):3524–3533MathSciNetCrossRefGoogle Scholar
  19. 19.
    Li XL, Zhang WM, Gui XL, Yang B (2013) A novel reversible data hiding scheme based on two-dimensional difference-histogram modification. IEEE Trans Inf Forensic Secur 8(7):1091–1100CrossRefGoogle Scholar
  20. 20.
    Lin CC, Hsueh NL (2008) A lossless data hiding scheme based on three-pixel block differences. Pattern Recogn. 41:1415–1425CrossRefzbMATHGoogle Scholar
  21. 21.
    Lin SL, Huang CF, Liou MH, Chen C.Y. (2013) Improving histogram-based reversible information hiding by an optimal weight-based prediction scheme. Journal of Information Hiding and Multimedia Signal Processing 4(1):19–33Google Scholar
  22. 22.
    Luo L, Chen Z, Chen M, Zeng X, Xiong Z (2010) Reversible image watermarking using interpolation technique. IEEE Trans Inf Forensic Secur 5(1):187–193CrossRefGoogle Scholar
  23. 23.
    Marin O, Shih FY (2014) Reversible data hiding techniques using multiple scanning difference value histogram modification. Journal of Information Hiding and Multimedia Signal Processing 5(3):451–460Google Scholar
  24. 24.
    Ni Z, Shi YQ, Ansari N, Su W (2006) Reversible data hiding. IEEE Trans Circuits Syst Video Technol 16:354–362CrossRefGoogle Scholar
  25. 25.
    Ou B, Li XL, Zhao Y, Ni RR (2013) Reversible data hiding based on pde predictor. J Syst Softw 86(10):2700–2709CrossRefGoogle Scholar
  26. 26.
    Ou B, Li XL, Zhao Y, Ni RR, Shi YQ (2013) Pairwise prediction-error expansion for efficient reversible data hiding. IEEE Trans Image Process 22(12):5010–5021MathSciNetCrossRefGoogle Scholar
  27. 27.
    Peng F, Li X, Yang B (2012) Adaptive reversible data hiding scheme based on integer transform. Signal Process 92(1):54–62CrossRefGoogle Scholar
  28. 28.
    Peng F, Li XL, Yang B (2014) Improved pvo-based reversible data hiding. Digit Signal Process 25:255–265CrossRefGoogle Scholar
  29. 29.
    Sachnev V, Kim HJ, Nam J, Suresh S, Shi YQ (2009) Reversible watermarking algorithm using sorting and prediction. IEEE Trans Circuits Syst Video Technol 19(7):989–999CrossRefGoogle Scholar
  30. 30.
    Tai WL, Yeh CM, Chang CC (2009) Reversible data hiding based on histogram modification of pixel differences. IEEE Trans Circuits Syst Video Technol 19(6):906–910CrossRefGoogle Scholar
  31. 31.
    Thodi DM, Rodrguez JJ (2007) Expansion embedding techniques for reversible watermarking. IEEE Trans Image Process 16(3):721–730MathSciNetCrossRefGoogle Scholar
  32. 32.
    Tian J (2003) Reversible data embedding using a difference expansion. IEEE Trans Circuits Syst Video Technol 13(8):890–896CrossRefGoogle Scholar
  33. 33.
    Tsai PY, Hu YC, Yeh HL (2009) Reversible image hiding scheme using predictive coding and histogram shifting. Signal Process 89(6):1129–1143CrossRefzbMATHGoogle Scholar
  34. 34.
    Wang X, Li XL, Yang B (2010) High capacity reversible image watermarking based on integer transform. In: Proceedings of ICIPGoogle Scholar
  35. 35.
    Wang X, Li XL, Yang B, Guo ZM (2010) Efficient generalized integer transform for reversible watermarking. IEEE Signal Process Lett 17(6):567–570CrossRefGoogle Scholar
  36. 36.
    Weinberger MJ, Seroussi G, Sapiro G (2000) The loco-i lossless image compression algorithm: Principles and standardization into jpegls. IEEE Trans Image Process 9(8):1309–1324CrossRefGoogle Scholar
  37. 37.
    Weng SW, Zhao Y, Ni RR, Pan JS (2009) Parity-invariability-based reversible watermarking. IET Electronics Lett 1(2):91–95Google Scholar
  38. 38.
    Weng SW, Zhao Y, Pan JS, Ni RR (2008) Reversible watermarking based on invariability and adjustment on pixel pairs. IEEE Signal Process Lett 45(20):1022–1023Google Scholar
  39. 39.
    Wu HT, Huang JW (2012) Reversible image watermarking on prediction errors by efficient histogram modification. Signal Process 92(12):3000–3009CrossRefGoogle Scholar
  40. 40.
    Wu X, Memon N (1997) Context-based, adaptive, lossless image coding. IEEE Trans Commun 45(4):437–444CrossRefGoogle Scholar
  41. 41.
    Xuan GR, Yang CY, Zhen YZ, Shi YQ (2004) Reversible data hiding using integer wavelet transform and companding technique. In: Proceedings of IWDW, vol 5, pp 23–26Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.School of Information EngineeringGuangdong University of TechnologyGuangZhouPeople’s Republic of China
  2. 2.Harbin Institute of Technology Shenzhen, Graduate SchoolShenzhenPeople’s Republic of China

Personalised recommendations