Multimedia Tools and Applications

, Volume 75, Issue 12, pp 7087–7111 | Cite as

Image source acquisition identification of mobile devices based on the use of features

  • Ana Lucila Sandoval Orozco
  • Jocelin Rosales Corripio
  • Luis Javier García Villalba
  • Julio César Hernández Castro


Nowadays, forensic analysis of digital images is especially important, given the frequent use of digital cameras in mobile devices. The identification of the device type or the make and model of image source are two important branches of forensic analysis of digital images. In this paper we have addressed both of these, with an approach based on different types of image features and the classification using support vector machines. The study has mainly focused on images created with mobile devices and as a result, the techniques and features have been adapted or created for this purpose. There have been a total of 36 experiments classified into 5 sets, in order to test different configurations of the techniques. In the configuration of the experiments, the future use of the technique by the forensic analyst in real situations to create experiments with high technical requirements was taken into account, amongst other things.


Forensics analysis Counter forensics Image anonymity Image forgery Photo response non uniformity Wavelet 



Part of the computations of this work were performed in EOLO, the HPC of Climate Change of the International Campus of Excellence of Moncloa, funded by MECD and MICINN.


  1. 1.
    Ahonen T, Moore A (2012) Tomi Ahonen Almanac 2012: mobile telecoms industry annual reviewGoogle Scholar
  2. 2.
    Al-Zarouni M (2006) Mobile handset forensic evidence: a challenge for law enforcement. In: Proceedings of the 4th australian digital forensics conference. school of computer and information science, edith cowan universityGoogle Scholar
  3. 3.
    Baer R (2010) Resolution limits in digital photography: the looming end of the pixel wars - OSA technical digest (CD). In: Proceedings of the imaging systems, p. ITuB3. Optical society of America. doi: 10.1364/IS.2010.ITuB3
  4. 4.
    Bayram S, Sencar HT, Memon N (2006) Improvements on source camera-model identification based on CFA interpolation. In: Working group 11.9 international conference on digital forensics, pp. 24–27. SpringerGoogle Scholar
  5. 5.
    Bayram S, Sencar HT, Memon N (2008) Classification of digital camera-models based on demosaicing artifacts. Digit Investig 5(1-2):49–59. doi: 10.1016/j.diin.2008.06.004 CrossRefGoogle Scholar
  6. 6.
    Boutell M, Luo J (2004) Photo classification by integrating image content and camera metadata. In: Proceedings of the 17th international conference on pattern recognition, vol. 4, pp. 901–904. IEEE Computer Society. doi: 10.1109/ICPR.2004.1333918
  7. 7.
    Boutell M, Luo J (2005) Beyond pixels: exploiting camera metadata for photo classification. Pattern Recognit 38(6):935–946. doi: 10.1016/j.patcog.2004.11.013 CrossRefGoogle Scholar
  8. 8.
    Cao H, Kot AC (2010) Mobile camera identification using demosaicing features. In: Circuits and systems (ISCAS), Proceedings of 2010 IEEE international symposium on, pp. 1683–1686. IEEEGoogle Scholar
  9. 9.
    Celiktutan O, Avcibas I, Sankur B, Ayerden NP, Capar C (2006) Source cell-phone identification. In: Proceedings of the IEEE 14th signal processing and communications applications, pp. 1–3. IEEE. doi: 10.1109/SIU.2006.1659882
  10. 10.
    Celiktutan O, Sankur B, Avcibas I (2008) Blind identification of source cell-phone model. IEEE Trans Inf Forensics Secur 3(3):553–566CrossRefGoogle Scholar
  11. 11.
    Chang CC, Lin CJ LIBSVM: a library for support vector machines. Version 3.17, Abril 26, 2013
  12. 12.
    Chen M, Fridrich J, Goljan M, Lukas J (2008) Determining image origin and integrity using sensor noise. IEEE Trans Inf Forensics Secur 3(1):74–90. doi: 10.1109/TIFS.2007.916285 CrossRefGoogle Scholar
  13. 13.
    Choi KS (2006) Source camera identification using footprints from lens aberration. In: Proceedings on digital photography II, no. 852 in 6069, pp. 60,690J–60,690J–8. SPIE international society for optical engineeringGoogle Scholar
  14. 14.
    Committee S Exchangeable Image File for digital still cameras: Exif version 2.3, April 26, 2010.
  15. 15.
    Costa FDO, Eckmann M, Scheirer WJ, Rocha A (2012) Open set source camera attribution. In: Proceedings of the 25th conference on graphics, patterns and images, pp. 71–78. IEEE. doi: 10.1109/SIBGRAPI.2012.19
  16. 16.
    Fan J, Kot A, Cao H, Sattar F (2011) Modeling the EXIF-image correlation for image manipulation detection. In: 18th IEEE international conference on image processing (ICIP), pp. 1945–1948. doi: 10.1109/ICIP.2011.6115853
  17. 17.
    Gartner Inc. (2013) Gartner says smartphone sales grew 46.5 percent in second quarter of 2013 and exceeded feature phone sales for First Time
  18. 18.
    Geradts ZJ, Bijhold J, Kieft M, Kurosawa K, Kuroki K, Saitoh N (2001) Methods for identification of images acquired with digital cameras. In: Proceedings on enabling technologies for law enforcement and security, vol. 4232, pp. 505–512. spie-international society for optical engine. doi: 10.1117/12.417569
  19. 19.
    Gloe T, Kirchner M, Winkler A, Bohme R (2007) Can we trust digital image forensics?. In: Proceedings of the 15th international conference on multimedia, pp. 78–86. ACM Press. doi: 10.1145/1291233.1291252
  20. 20.
    Ho JS, Au OC, Zhou J, Guo Y (2010) Inter-channel demosaicking traces for digital image forensics. In: Multimedia and expo (ICME), 2010 IEEE international conference on, pp. 1475–1480. doi: 10.1109/ICME.2010.5582951
  21. 21.
    Hsuand CW, Chang CC, Lin CJ (2003) A Practical Guide to Support Vector Classification. Practical guide, Department of Computer Science and Information Engineering, National Taiwan UniversityGoogle Scholar
  22. 22.
    Hu Y, Li CT, Zhou C (2010) Selecting Forensic Features for Robust Source Camera Identification. In: Computer Symposium (ICS), 2010 International, pp. 506–511. doi: 10.1109/COMPSYM.2010.5685458
  23. 23.
    Embedded Imaging Takes Off as Stand-alone Digital Cameras Stall (2013).
  24. 24.
    Jang CJ, Lee JY, won Lee J, Cho HG (2007) Smart management system for digital photographs using temporal and spatial features with EXIF metadata. In: Digital information management, 2007. ICDIM ’07. 2nd international conference on, vol. 1, pp. 110–115. doi: 10.1109/ICDIM.2007.4444209
  25. 25.
    Khanna N, Mikkilineni AK, Delp EJ (2009) Scanner identification using feature-based processing and analysis. IEEE Trans Inf Forensics Secur 4(1):123–139CrossRefGoogle Scholar
  26. 26.
    Khannaa N, Mikkilinenib AK, Chiub GT, Allebacha J, Delpa EJ (2006) Forensic Classification of Imaging Sensor Types. Rfc, Purdue UniversityGoogle Scholar
  27. 27.
    Liu Q, Li X, Chen L, Cho H, Cooper AP, Chen Z, Qiao M, Sung AH (2012) Identification of smartphone-image source and manipulation. In: Jiang H, Ding W, Ali M, Wu X (eds) Advanced research in applied artificial intelligence, lecture notes in computer science, vol. 7345. Springer Berlin Heidelberg, Dalian, pp 262–271. doi: 10.1007/978-3-642-31087-4_28 Google Scholar
  28. 28.
    Long Y, Huang Y (2006) Image based source camera identification using demosaicking. In: Proceedings of the IEEE 8th Workshop on multimedia signal processing, pp. 419–424. IEEE. doi: 10.1109/MMSP.2006.285343
  29. 29.
    Lukas J, Fridrich J, Goljan M (2006) Digital camera identification from sensor pattern noise. IEEE Trans Inf Forensics Secur 1(2):205–214. doi: 10.1109/TIFS.2006.873602 CrossRefGoogle Scholar
  30. 30.
    McKay C (2007) Forensic analysis of digital imaging devices. Technical report, University of MarylandGoogle Scholar
  31. 31.
    Mckay C, Swaminathan A, Gou H, Wu M (2008) Image acquisition forensics: forensic analysis to identify imaging source. In: Proceedings of the IEEE international conference on acoustics, speech and signal processing, international conference on acoustics speech and signal processing (ICASSP), pp. 1657–1660. IEEE. doi: 10.1109/ICASSP.2008.4517945
  32. 32.
    Michie D, Spiegelhalter DJ, Taylor CC (1994) Machine learning, neural and statistical classification. Ellis HorwoodGoogle Scholar
  33. 33.
    de Costa FO, Silva E, Eckmann M, Scheirer WJ, Rocha A (2014) Open set source camera attribution and device linking. Pattern Recogn Lett 39(0):92–101CrossRefGoogle Scholar
  34. 34.
    Ozparlak L, Avcibas I (2011) Differentiating between images using wavelet-based transforms: a comparative study. IEEE Trans Inf Forensics Secur 6(4):1418–1431CrossRefGoogle Scholar
  35. 35.
    Platt J (2000) AutoAlbum: Clustering Digital Photographs Using Probabilistic Model Merging. In: Proceedings of the IEEE Workshop on Content-based Access of Image and Video Libraries, pp. 96–100. IEEE. doi: 10.1109/IVL.2000.853847
  36. 36.
    Rocha A, Scheirer W, Boult T, Goldenstein S (2011) Vision of the unseen: current trends and challenges in digital image and video forensics. ACM Comput Surv 43(4):26:1–26:42. doi: 10.1145/1978802.1978805 CrossRefGoogle Scholar
  37. 37.
    Romero NL, Chornet VG, Cobos JS, Carot AS, Centellas FC, Mendez MC (2008) Recovery of descriptive information in images from digital libraries by means of EXIF metadata. Library Hi Tech 26(2):302–315. doi: 10.1108/07378830810880388 CrossRefGoogle Scholar
  38. 38.
    Rosales Corripio J, Arenas González DM, Sandoval Orozco AL, García Villalba LJ, Hernandez-Castro JC, Gibson SJ (2013) Source smartphone identification using sensor pattern noise and wavelet transform. In: Proceedings of the 5th international conference on imaging for crime detection and prevention (ICDP 2013), pp. 1–6Google Scholar
  39. 39.
    Sandoval Orozco A, Arenas González D, Rosales Corripio J, García Villalba L, Hernandez-Castro J (2013) Techniques for source camera identification. In: Proceedings of the 6th international conference on information technology, pp. 1–9Google Scholar
  40. 40.
    Sandoval Orozco AL, Arenas González DM, García Villalba LJ, Hernandez-Castro J (2014) Analysis of Errors in Exif Metadata on Mobile Devices. Multimedia Tools and Applications pp. 1–29. doi: 10.1007/s11042-013-1837-6
  41. 41.
    Sandoval Orozco AL, Arenas Gonzlez DM, Rosales Corripio J, Garca Villalba LJ, Hernandez-Castro JC (2014) Source identification for mobile devices, based on wavelet transforms combined with sensor imperfections. Computing 96(9):829–841. doi: 10.1007/s00607-013-0313-5 CrossRefzbMATHGoogle Scholar
  42. 42.
    Swaminathan A, Wu M, Liu K (2009) Component forensics. IEEE Signal Process Mag 26(2):38–48. doi: 10.1109/MSP.2008.931076 CrossRefGoogle Scholar
  43. 43.
    Tesic J (2005) Metadata practices for consumer photos. IEEE Multimedia 12(3):86–92. doi: 10.1109/MMUL.2005.50 CrossRefGoogle Scholar
  44. 44.
    Tsai MJ, Lai CL, Liu J (2007) Camera/Mobile Phone Source Identification for Digital Forensics. In: Proceedings of the International Conference on Acoustics Speech and Signal Processing, pp. II–221–II–224. IEEE. doi: 10.1109/ICASSP.2007.366212
  45. 45.
    Van LT, Emmanuel S, Kankanhalli M (2007) Identifying Source Cell Phone using Chromatic Aberration. In: IEEE International Conference on Multimedia and Expo, pp. 883–886. doi: 10.1109/ICME.2007.4284792
  46. 46.
    Van Lanh T, Chong KS, Emmanuel S, Kankanhalli MS (2007) A Survey on Digital Camera Image Forensic Methods. In: IEEE International Conference on Multimedia and Expo, pp. 16–19. IEEE. doi: 10.1109/ICME.2007.4284575
  47. 47.
    Wang B, Guo Y, Kong X, Meng F (2009) Source Camera Identification Forensics Based on Wavelet Features. In: International Conference on Intelligent Information Hiding and Multimedia Signal Processing, vol. 0, pp. 702–705. IEEE Computer Society. doi: 10.1109/IIH-MSP.2009.244, (to appear in print)

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Ana Lucila Sandoval Orozco
    • 1
  • Jocelin Rosales Corripio
    • 1
  • Luis Javier García Villalba
    • 1
  • Julio César Hernández Castro
    • 2
  1. 1.Group of Analysis, Security and Systems (GASS), Department of Software Engineering and Artificial Intelligence (DISIA), Faculty of Computer Science and Engineering, Office 431Universidad Complutense de Madrid (UCM)MadridSpain
  2. 2.School of Computing, Office S129AUniversity of KentCanterburyUK

Personalised recommendations