Multimedia Tools and Applications

, Volume 75, Issue 10, pp 5513–5531 | Cite as

Aligning shapes for symbol classification and retrieval

  • Sebastiano Battiato
  • Giovanni Maria Farinella
  • Oliver Giudice
  • Giovanni Puglisi


This paper proposes a method able to exploit peculiarities of both, local and global shape descriptors, to be employed for shape classification and retrieval. In the proposed framework, the silhouettes of symbols are firstly described through Bags of Shape Contexts. The shape signature is then used to solve the correspondence problem between points of two shapes. The obtained correspondences are employed to recover the geometric transformations between the shape to be classified/retrieved and the ones belonging to the training dataset. The alignment is based on a voting procedure in the parameter space of the model considered to recover the geometric transformation. The aligned shapes are finally described with the Blurred Shape Model descriptor for classification and retrieval purposes. Experimental results demonstrate the effectiveness of the proposed solution on two classic benchmark shape datasets, as well as on a large scale set of hand sketches composed by 20,000 examples distributed over 250 object categories.


Shape recognition Shape retrieval Symbol classification Alignment 


  1. 1.
    Azzaro G, Caccamo M, Ferguson J, Battiato S, Farinella GM, Guarnera G, Puglisi G, Petriglieri R, Licitra G (2011) Objective estimation of body condition score by modeling cow body shape from digital images. J Dairy Sci 94(4):2126–2137CrossRefGoogle Scholar
  2. 2.
    Bai X, Liu W, Tu Z (2009) Integrating contour and skeleton for shape classification. In: IEEE international conference on computer vision workshops, pp 360–367Google Scholar
  3. 3.
    Battiato S, Farinella GM, Giudice O, Puglisi G (2012) Aligning bags of shape contexts for blurred shape model based symbol classification. In: Proceedings of international conference on pattern recognition (ICPR), pp 1598–1601Google Scholar
  4. 4.
    Battiato S, Farinella GM, Messina E, Puglisi G (2012) Robust image alignment for tampering detection. IEEE Trans Inf Forensics Secur 7(4):1105–1117CrossRefGoogle Scholar
  5. 5.
    Belongie S, Malik J, Puzicha J (2002) Shape matching and object recognition using shape contexts. IEEE Trans Pattern Anal Mach Intel 24(4):509–522CrossRefGoogle Scholar
  6. 6.
    Caglar T, Berrin Y, Metin TS (2012) Sketched symbol recognition with auto-completion. Pattern Recog 45:3926–3937CrossRefGoogle Scholar
  7. 7.
    da Fontoura Costa L, Cesar RM Jr (2009) Shape classification and analysis: theory and practice, 2nd edn. CRC Press, Inc., Boca RatonCrossRefzbMATHGoogle Scholar
  8. 8.
    Daliri MR, Torre V (2008) Robust symbolic representation for shape recognition and retrieval. Pattern Recog 41(5):1782–1798CrossRefzbMATHGoogle Scholar
  9. 9.
    Eitz M, Hays J, Alexa M (2012) How do humans sketch objects?. ACM Trans Graph (SIGGRAPH) 31(4):44:1–44:10Google Scholar
  10. 10.
    Escalera S, Fornés A, Pujol O, Lladós J, Radeva P (2011) Circular blurred shape model for multiclass symbol recognition. IEEE Trans Syst Man Cybern 41(2):497–506CrossRefGoogle Scholar
  11. 11.
    Farinella GM, Impoco G, Gallo G, Spoto S, Catanuto G, Nava MB (2006) Objective outcome evaluation of breast surgery. In: Medical image computing and computer-assisted intervention—MICCAI 2006. Lecture Notes in Computer Science, vol 4190. Springer, Berlin Heidelberg, pp 776–783Google Scholar
  12. 12.
    Kuhn HW (1955) The hungarian method for the assignment problem. Nav Res Logist Q 2:83–97MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Lim KL, Galoogahi H (2010) Shape classification using local and global features. In: Pacific-rim symposium on image and video technology, pp 115–120Google Scholar
  14. 14.
    Marr D (1982) Vision: a computational investigation into the human representation and processing of visual information. Henry Holt and Co., Inc., New YorkGoogle Scholar
  15. 15.
    McNeill G, Vijayakumar S (2006) Hierarchical procrustes matching for shape retrieval. In: IEEE computer society conference on computer vision and pattern recognition, pp 885–894Google Scholar
  16. 16.
    Munder S, Schnörr C, Gavrila DM (2008) Pedestrian detection and tracking using a mixture of view-based shape-texture models. IEEE Trans Intell Transp Syst 9(2):333–343CrossRefGoogle Scholar
  17. 17.
    Philbin J, Chum O, Isard M, Sivic J, Zisserman A (2007) Object retrieval with large vocabularies and fast spatial matching. In: Conference on computer vision and pattern recognitionGoogle Scholar
  18. 18.
    Puglisi G, Battiato S (2011) A robust image alignment algorithm for video stabilization purposes. IEEE Trans Circ Syst Video Technol 21(10):1390–1400CrossRefGoogle Scholar
  19. 19.
    Qi GJ, Tian Q, Huang T (2011) Locality-sensitive support vector machine by exploring local correlation and global regularization. In: IEEE international conference on computer vision and pattern recognition, pp 841–848Google Scholar
  20. 20.
    Qi J, Xin F, Zhongxuan L, Yu L, He G (2014) A new geometric descriptor for symbols with affine deformations. Pattern Recogn Lett 40:128–135CrossRefGoogle Scholar
  21. 21.
    Velasco-Forero S, Angulo J (2010) Statistical shape modeling using morphological representations. In: International conference on pattern recognition, pp 3537–3540Google Scholar
  22. 22.
    Wang B, Shen W, Liu WY, You XG, Bai X (2010) Shape classification using tree-unions. In: International conference on pattern recognition, pp 983–986Google Scholar
  23. 23.
    Wang J, Bai X, You X, Liu W, Latecki L (2011) Shape matching and classification using height functions. Pattern Recogn Lett 33:134–143CrossRefGoogle Scholar
  24. 24.
    Yan Y, Shen H, Liu G, Ma Z, Gao C, Sebe N (2014) GLocal tells you more: coupling GLocal structural for feature selection with sparsity for image and video classification. Comp Vision Image Underst 124:99–109. Large Scale Multimedia Semantic IndexingCrossRefGoogle Scholar
  25. 25.
    Zhang D, Lu G (2004) Review of shape representation and description techniques. Pattern Recog 37(1):1–19CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Sebastiano Battiato
    • 1
  • Giovanni Maria Farinella
    • 1
  • Oliver Giudice
    • 1
  • Giovanni Puglisi
    • 2
  1. 1.Image Processing Laboratory, Department of Mathematics and Computer ScienceUniversity of CataniaCataniaItaly
  2. 2.Dipartimento di Matematica e InformaticaUniversity of CagliariCagliariItaly

Personalised recommendations