Multimedia Tools and Applications

, Volume 75, Issue 10, pp 5473–5492 | Cite as

Non-rigid visual object tracking using user-defined marker and Gaussian kernel

Article

Abstract

A novel non-rigid object tracking based on interactive user-define marker and superpixel Gaussian kernel is proposed in this paper. In the initialization stage, instead of using the traditional bounding box to locate the targeted object, we have employed an interactive segmentation with user-defined marker to segment the object accurately in the first frame of the input video to avoid the background influence in the traditional bounding box. During the tracking stage, by using a Gaussian kernel as movement constraint, each superpixel is tracked independently to locate the object in the next frame. Experimental results show that the proposed method compared to state of the art methods can achieve better robustness and accuracy for various challenging video clips.

Keywords

Object tracking Non-rigid Superpixel Interactive segmentation Gaussian kernel 

References

  1. 1.
    Achanta R, Shaji A, Smith K, Lucchi A, Fua P, Susstrunk S (2012) SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Trans Pattern Anal Mach Intell 34(11):2274–2282CrossRefGoogle Scholar
  2. 2.
    Adam A, Rivlin E, Shimshoni I (2006) Robust fragments-based tracking using the integral histogram. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 545–548Google Scholar
  3. 3.
    Avidan S (2007) Ensemble tracking. IEEE Trans Pattern Anal Mach Intell 29(2):261–271CrossRefGoogle Scholar
  4. 4.
    Babenko B, Ming-Hsuan Y, Belongie S (2009) Visual tracking with online multiple instance learning. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 983–990Google Scholar
  5. 5.
    Bohyung H, Davis L (2005) On-line density-based appearance modeling for object tracking. In: Proceedings of IEEE international conference on computer vision, pp 1492–1499Google Scholar
  6. 6.
    Cehovin L, Kristan M, Leonardis A (2011) An adaptive coupled-layer visual model for robust visual tracking. In: Proceedings of IEEE international conference on computer vision, pp. 1363–1370Google Scholar
  7. 7.
    Cehovin L, Kristan M, Leonardis A (2013) Robust visual tracking using an adaptive coupled-layer visual model. IEEE Trans Pattern Anal Mach Intell 35(4):941–953CrossRefGoogle Scholar
  8. 8.
    Collins RT, Yanxi L (2003) On-line selection of discriminative tracking features. In: Proceedings of IEEE international conference on computer vision, pp 346–352Google Scholar
  9. 9.
    Collins RT, Yanxi L, Leordeanu M (2005) Online selection of discriminative tracking features. IEEE Trans Pattern Anal Mach Intell 27(10):1631–1643CrossRefGoogle Scholar
  10. 10.
    Comaniciu D, Meer P (2002) Mean shift: a robust approach toward feature space analysis. IEEE Trans Pattern Anal Mach Intell 24(5):603–619CrossRefGoogle Scholar
  11. 11.
    Fan Y, Huchuan L, Ming-Hsuan Y (2014) Robust superpixel tracking. IEEE Trans Image Process 23(4):1639–1651MathSciNetCrossRefGoogle Scholar
  12. 12.
    Felzenszwalb PF, Girshick RB, McAllester D, Ramanan D (2010) Object detection with discriminatively trained part-based models. IEEE Trans Pattern Anal Mach Intell 32(9):1627–1645CrossRefGoogle Scholar
  13. 13.
    Godec M, Roth P M, Bischof H (2011) Hough-based tracking of non-rigid objects. In: Proceedings of IEEE international conference on computer vision, pp 81–88Google Scholar
  14. 14.
    Han B, Zhu Y, Comaniciu D, Davis LS (2009) Visual tracking by continuous density propagation in sequential Bayesian filtering framework. IEEE Trans Pattern Anal Mach Intell 31(5):919–930CrossRefGoogle Scholar
  15. 15.
    Jepson AD, Fleet D J, El-Maraghi TR (2001) Robust online appearance models for visual tracking. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp I-415-I-422Google Scholar
  16. 16.
    Jung C, Jian M, Liu J, Jiao L, Shen Y (2014) Interactive image segmentation via kernel propagation. Pattern Recogn 47(8):2745–2755CrossRefGoogle Scholar
  17. 17.
    Junseok K, Kyoung Mu L (2013) Highly nonrigid object tracking via patch-based dynamic appearance modeling. IEEE Trans Pattern Anal Mach Intell 35(10):2427–2441CrossRefGoogle Scholar
  18. 18.
    Junseok K, Kyoung-Mu L (2009) Tracking of a non-rigid object via patch-based dynamic appearance modeling and adaptive basin hopping Monte Carlo sampling. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1208–1215Google Scholar
  19. 19.
    Junseok K, Kyoung-Mu L (2010) Visual tracking decomposition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1269–1276Google Scholar
  20. 20.
    Kalal Z, Matas J, Mikolajczyk K (2010) P-N learning: Bootstrapping binary classifiers by structural constraints. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 49–56Google Scholar
  21. 21.
    Kumar Mallapragada P, Rong J, Jain AK, Yi L (2009) SemiBoost: boosting for semi-supervised learning. IEEE Trans Pattern Anal Mach Intell 31(11):2000–2014CrossRefGoogle Scholar
  22. 22.
    Mazinan AH, Amir-Latifi A (2013) A new algorithm to rigid and non-rigid object tracking in complex environments. Int J Adv Manuf Technol 64(9–12):1643–1651CrossRefGoogle Scholar
  23. 23.
    Ming Y, Ying W (2005) Tracking non-stationary appearances and dynamic feature selection. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1059–1066Google Scholar
  24. 24.
    Ning J, Zhang L, Zhang D, Wu C (2010) Interactive image segmentation by maximal similarity based region merging. Pattern Recogn 43(2):445–456CrossRefMATHGoogle Scholar
  25. 25.
    Noma A, Graciano ABV, Cesar RM Jr, Consularo LA, Bloch I (2012) Interactive image segmentation by matching attributed relational graphs. Pattern Recogn 45(3):1159–1179CrossRefGoogle Scholar
  26. 26.
    Nummiaro K, Koller-Meier E, Van Gool L (2003) An adaptive color-based particle filter. Image Vis Comput 21(1):99–110CrossRefMATHGoogle Scholar
  27. 27.
    Protiere A, Sapiro G (2007) Interactive image segmentation via adaptive weighted distances. IEEE Trans Image Process 16(4):1046–1057MathSciNetCrossRefGoogle Scholar
  28. 28.
    Ross DA, Lim J, Lin RS, Yang MH (2008) Incremental learning for robust visual tracking. Int J Comput Vis 77(1–3):125–141CrossRefGoogle Scholar
  29. 29.
    Rother C, Kolmogorov V, Blake A (2004) “GrabCut”: interactive foreground extraction using iterated graph cuts. ACM Trans Graph 23(3):309–314CrossRefGoogle Scholar
  30. 30.
    Saffari A, Leistner C, Santner J, Godec M, Bischof H (2009) On-line random forests. In: Proceedings of IEEE international conference on computer vision, pp 1393–1400Google Scholar
  31. 31.
    Shu W, Huchuan L, Fan Y, Ming-Hsuan Y (2011) Superpixel tracking. In: Proceedings of IEEE international conference on computer vision, pp 1323–1330Google Scholar
  32. 32.
    Xue M, Haibin L (2011) Robust visual tracking and vehicle classification via sparse representation. IEEE Trans Pattern Anal Mach Intell 33(11):2259–2272CrossRefGoogle Scholar
  33. 33.
    Yilmaz A, Javed O, Shah M (2006) Object tracking: a survey. ACM Comput Surv 38(4):13CrossRefGoogle Scholar
  34. 34.
    Zhang X, Yu J, Wang T, Hou B, Jiao L C (2013) Path-based similarity with instance-level constraints for SemiBoost. In: Proceedings of SPIE international symposium on multispectral image processing and pattern recognition, pp 891911-891911-8Google Scholar
  35. 35.
    Zhang K, Zhang L, Yang MH (2012) Real-time compressive tracking. In: Proceedings of European conference on computer vision, pp 864–877Google Scholar
  36. 36.
    Zia K, Balch T, Dellaert F (2005) MCMC-based particle filtering for tracking a variable number of interacting targets. IEEE Trans Pattern Anal Mach Intell 27(11):1805–1819CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Guoheng Huang
    • 1
  • Chi-Man Pun
    • 1
  • Cong Lin
    • 1
  • Yicong Zhou
    • 1
  1. 1.Department of Computer and Information ScienceUniversity of MacauMacauChina

Personalised recommendations