Multimedia Tools and Applications

, Volume 76, Issue 4, pp 5803–5816 | Cite as

Bayesian image reconstruction for positron emission tomography based on anisotropic median-diffusion

Article

Abstract

For improving the quality of positron emission tomography (PET) images, the partial differential equation median (PDEmedian) algorithm which incorporates an anisotropic diffusion (AD) filter into the median root prior (MRP) algorithm was proposed. However, due to the shortcomings of the AD filter, the PDEmedian algorithm is difficult to realize. This work aims to solve this problem by introducing a new diffusion model into the PDEmedian. The proposed algorithm shows its positive effects on image reconstruction and denoising. Experimental results present that the new algorithm can preserve sharp edges while reducing noise at the same time. Furthermore, in comparison to other similar reconstruction algorithms, the proposed method is less sensitive to the value of the gradient threshold and the adjustment of the diffusion number.

Keywords

Positron emission tomography Partial differential equation Median root prior Anisotropic diffusion 

References

  1. 1.
    Alenius S, Ruotsalainen U (1997) Bayesian image reconstruction for emission tomography based on median root prior. Eur J Nucl Med 24(3):258–265Google Scholar
  2. 2.
    Alenius S, Ruotsalainen U (2002) Generalization of median root prior reconstruction. IEEE Trans Med Imaging 21(11):1413–1420CrossRefGoogle Scholar
  3. 3.
    Black MJ, Sapiro G, Marimont DH, Heeger D (1998) Robust anisotropic diffusion. IEEE Trans Image Process 7(3):421–432CrossRefGoogle Scholar
  4. 4.
    Canny J (1986) A computational approach to edge detection. IEEE Trans Pattern AnalMach Int 8(6):679–698CrossRefGoogle Scholar
  5. 5.
    Ferrari RJ (2013) Off-line determination of the optimal number of iterations of the robust anisotropic diffusion filter applied to denoising of brain MR images. Med Biol Eng Comput 51(1–2):71–88CrossRefGoogle Scholar
  6. 6.
    Gaitanis A, Kontaxakis G, Spyrou G, Panayiotakis G, Tzanakos G (2010) PET image reconstruction: a stopping rule for the MLEM algorithm based on properties of the updating coefficients. Comput Med Imaging Graph 34(2):131–141CrossRefGoogle Scholar
  7. 7.
    Green PJ (1990) Bayesian reconstructions from emission tomography data using a modified EM algorithm. IEEE Trans Med Imaging 9(1):84–93MathSciNetCrossRefGoogle Scholar
  8. 8.
    Grega M, Bryk D, Napora M (2012) INACT—INDECT advanced image cataloguing tool. Multimed Tools Appl. doi:10.1007/s11042-012-1164-3 Google Scholar
  9. 9.
    Gui ZG, He JW (2012) Regularized maximum likelihood algorithm for PET image reconstruction using a detail and edges preserving anisotropic diffusion. Optik 123(6):507–510CrossRefGoogle Scholar
  10. 10.
    Gui ZG, Liu Y, He JW (2012) PML algorithm for positron emission tomography combined with nonlocal fuzzy anisotropic diffusion filtering. IEEE Trans Nucl Sci 59(5):1984–1989CrossRefGoogle Scholar
  11. 11.
    He Q, Huang LH (2014) Penalized maximum likelihood algorithm for positron emission tomography by using anisotropic median-diffusion. Math Probl Eng 2014, Article ID 491239, doi:10.1155/2014/491239
  12. 12.
    Hsiao IT, Rangarajan A, Gindi G (2003) A new convex edge-preserving median prior with applications to tomography. IEEE Trans Med Imaging 22(5):580–585CrossRefGoogle Scholar
  13. 13.
    Kazantsev D, Arridge SR, Pedemonte S et al (2012) An anatomically driven anisotropic diffusion filtering method for 3D SPECT reconstruction. Phys Med Biol 57(12):3793–3810CrossRefGoogle Scholar
  14. 14.
    Koch A, Dipanda A, République CB (2012) Evolutionary-based 3D reconstruction using an uncalibrated stereovision system: application of building a panoramic object view. Multimedia Tools and Applications 2012. doi:10.1007/s11042-010-0657-1
  15. 15.
    Krissian K, Aja-Fernandez S (2009) Noise-driven anisotropic diffusion filtering of MRI. IEEE Trans Image Process 18(10):2265–2274MathSciNetCrossRefGoogle Scholar
  16. 16.
    Ling J, Bovik AC (2002) Smoothing low-SNR molecular images via anisotropic median-diffusion. IEEE Trans Med Imaging 21(4):377–384CrossRefGoogle Scholar
  17. 17.
    Nadernejad E, Sharifzadeh S, Hassanpour H (2008) Edge detection techniques: evaluations andcomparisons. Appl Math Sci 2(2–31):1507–1520MathSciNetMATHGoogle Scholar
  18. 18.
    Perona P, Malik J (1990) Scale-space and edge detection using anisotropic diffusion. IEEE Trans Pattern Anal Mach Intell 12(7):629–639CrossRefGoogle Scholar
  19. 19.
    Shepp LA, Vardi Y (1982) Maximum likelihood reconstruction for emission tomography. IEEE Trans Med Imaging 1(2):113–122CrossRefGoogle Scholar
  20. 20.
    Szwoch G (2014) Extraction of stable foreground image regions for unattended luggage detection. Multimed Tools Appl 2014. dcoi:10.1007/s11042-014-2324-4
  21. 21.
    Torkamani-Azar F, Tait KE (1996) Image recovery using the anisotropic diffusion equation. IEEE Trans Image Process 5(11):1573–1578CrossRefGoogle Scholar
  22. 22.
    Tsiotsios C, Petrou M (2013) On the choice of the parameters for anisotropic diffusion in image processing. Pattern Recogn 46(5):1369–1381CrossRefGoogle Scholar
  23. 23.
    Wu Y, Tracey B, Natarajan P, Noonan JP (2013) James-Stein type center pixel weights for non-local means image denoising. IEEE Signal Process Lett 20(4):411–414CrossRefGoogle Scholar
  24. 24.
    Yan JH, Yu J (2007) Median-prior tomography reconstruction combined with nonlinear anisotropic diffusion filtering. J Opt Soc Am A Opt Image Sci Vis 24(4):1026–1033MathSciNetCrossRefGoogle Scholar
  25. 25.
    Zhou J, Luo LM (2006) Sequential weighted least squares algorithm for PET image reconstruction. Digital Signal Process 16:735–745CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.College of Mathematics and EconometricsHunan UniversityChangshaChina
  2. 2.College of Information Science and EngineeringHunan City UniversityYiyangChina
  3. 3.Department of Information and TechnologyHunan Women’s UniversityChangshaChina

Personalised recommendations