Multimedia Tools and Applications

, Volume 76, Issue 4, pp 5787–5802 | Cite as

Distribution of primary additional errors in fractal encoding method

  • Shuai Liu
  • Weina Fu
  • Liqiang HeEmail author
  • Jiantao Zhou
  • Ming Ma


Today, fractal image encoding method becomes an effective loss compression method in multimedia without resolution, and its negativeness is that its high computational complexity. So many approximate methods are given to decrease the computation time. So the distribution of error points is valued to research. In this paper, by extracted primary additional error values, we first present a novel fast fractal encoding method. Then, with the extracted primary additional error values, we abstract the distribution of these values. We find that the different distribution of values denotes the different parts in images. Finally, we analyze the experimental results and find some properties of these values. The experimental results also show the effectiveness of the method.


Image enoding Fractal encoding Primary additional error Distribution Edge 



This work is supported by Grants Postgraduate Scientific Research Innovation Foundation of Inner Mongolia [B20141012610Z], Programs of Higher-level talents of Inner Mongolia University [No. 125126, 115117, 135103], Scientific projects of higher school of Inner Mongolia [No. NJZY13004], Natural Science Foundation of Inner Mongolia [No. 2014BS0606, 2014BS0602], National Natural Science Foundation of China [No. 61261019, 61262082].

The authors wish to thank the anonymous reviewers for their helpful comments in reviewing this paper.

Conflict of interest

The authors declare that there are no coflict of interest in this paper.


  1. 1.
    Barnsley MF, Jacquin AE (1988) Application of recurrent iterated function systems to images, in proceedings of the SPIE. Visual Commun Image Process 1001:122–131Google Scholar
  2. 2.
    Bedford T, Dekking FM, Breeuwer M et al (1994) Fractal coding of monochrome images [J]. Signal Process Image Commun 6(5):405–419CrossRefGoogle Scholar
  3. 3.
    Belloulata K (2005) Fast fractal coding of subbands using a non-iterative block clustering [J]. J Vis Commun Image Represent 16(1):55–67CrossRefGoogle Scholar
  4. 4.
    Bhavani S, Thanushkodi KG (2013) Comparison of fractal coding methods for medical image compression [J]. IET Image Process 7(7):686–693CrossRefGoogle Scholar
  5. 5.
    Chang HT, Kuo CJ (2000) Iteration-free fractal image coding based on efficient domain pool design [J]. Image Process IEEE Trans 9(3):329–339MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    K Falconer (2003) Fractal geometry: mathematical foundations and applications, Second Edition [M]. John Wiley @ Sons, IncGoogle Scholar
  7. 7.
    Goebel K, Kirk WA (1972) A fixed point theorem for asymptotically nonexpansive mappings [J]. Proc Am Math Soc 35(1):171–174MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    He JR, Yi L, Li HM (2014) Self-similar propagation and asymptotic optical waves in nonlinear waveguides [J]. Phys Rev E 90(1):013202CrossRefGoogle Scholar
  9. 9.
    Huffman DA (1952) A method for the construction of minimum redundancy codes [J]. Proc IRE (IEEE) 40(9):1098–1101CrossRefGoogle Scholar
  10. 10.
    Ilday FÖ, Buckley JR, Clark WG et al (2004) Self-similar evolution of parabolic pulses in a laser [J]. Phys Rev Lett 92(21):213902CrossRefGoogle Scholar
  11. 11.
    Jacquin AE (1992) Image coding based on a fractal theory of iterated contractive image transformations. IEEE Trans Image Process 1(1):18–30CrossRefGoogle Scholar
  12. 12.
    Kim CS, Kim RC, Lee SU (1998) Fractal coding of video sequence using circular prediction mapping and noncontractive interframe mapping [J]. Image Process IEEE Trans 7(4):601–605CrossRefGoogle Scholar
  13. 13.
    Kim IK, Park RH (1996) Still image coding based on vector quantization and fractal approximation [J]. Image Process IEEE Trans 15(4):587–597Google Scholar
  14. 14.
    Lai CM, Lam KM, Siu WC (2003) A fast fractal image coding based on kick-out and zero contrast conditions [J]. Image Process IEEE Trans 12(11):1398–1403MathSciNetCrossRefGoogle Scholar
  15. 15.
    Li J, Chen G, Chi Z (2002) A fuzzy image metric with application to fractal coding [J]. Image Process IEEE Trans 11(6):636–643CrossRefGoogle Scholar
  16. 16.
    Liu S, Cheng X, Lan C et al (2013) Fractal property of generalized M-set with rational number exponent [J]. Appl Math Comput 220:668–675MathSciNetzbMATHGoogle Scholar
  17. 17.
    Liu S, Fu W, Deng H et al (2013) Distributional fractal creating algorithm in parallel environment [J]. Int J Distrib Sensor Netw. doi: 10.1155/2013/281707 Google Scholar
  18. 18.
    Liu S, Fu W, Zhao W et al (2013) A novel fusion method by static and moving facial capture [J]. Math Probl Eng. doi: 10.1155/2013/503924 Google Scholar
  19. 19.
    Liu M, Liu S, Fu W, et al. (2014) Distributional escape time algorithm based on generalized fractal sets in cloud environment [J]. Chinese Journal of ElectronicsGoogle Scholar
  20. 20.
    Lu J, Ye Z, Zou Y (2013) Huber fractal image coding based on a fitting plane [J]. Image Process IEEE Trans 22(1):134–145MathSciNetCrossRefGoogle Scholar
  21. 21.
    Mandelbrot BB (1982) The fractal geometry of nature [M]. Freeman W H, San FranciscozbMATHGoogle Scholar
  22. 22.
    Monro DM, Dudbridge F (1992) Fractal block coding of images [J]. Electron Lett 28(11):1053–1055CrossRefGoogle Scholar
  23. 23.
    Press WH, Schechter P (1974) Formation of galaxies and clusters of galaxies by self-similar gravitational condensation [J]. Astrophys J 187:425–438CrossRefGoogle Scholar
  24. 24.
    Rao KR, Yip P (1990) Discrete cosine transform: algorithms, advantages, applications [M]. Academic press, BostonGoogle Scholar
  25. 25.
    Shapiro JM (1993) Embedded image coding using zerotrees of wavelet coefficients [J]. Signal Process IEEE Trans 41(12):3445–3462CrossRefzbMATHGoogle Scholar
  26. 26.
    Smart DR (1980) Fixed point theorems [M]. CUP ArchiveGoogle Scholar
  27. 27.
    Turaga DS, Chen Y, Caviedes J (2004) No reference PSNR estimation for compressed pictures [J]. Signal Process Image Commun 19(2):173–184CrossRefGoogle Scholar
  28. 28.
    Wang XY, Wang SG (2008) An improved no-search fractal image coding method based on a modified gray-level transform [J]. Comput Graph 32(4):445–450CrossRefGoogle Scholar
  29. 29.
    Wang XY, Wang YX, Yun JJ (2010) An improved no-search fractal image coding method based on a fitting plane [J]. Image Vis Comput 28(8):1303–1308CrossRefGoogle Scholar
  30. 30.
    Wang XY, Zhang DD (2014) Discrete wavelet transform-based simple range classification strategies for fractal image coding [J]. Nonlinear Dyn 75(3):439–448CrossRefGoogle Scholar
  31. 31.
    Yang G, Liu S (2014) Distributed cooperative algorithm for set with negative integer by fractal symmetrical property. Int J Distrib Sensor Netw. doi: 10.1155/2014/398583 Google Scholar
  32. 32.
    Zhang Y, Wang X (2012) Fractal compression coding based on wavelet transform with diamond search [J]. Nonlinear Anal Real World Appl 13(1):106–112MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Shuai Liu
    • 1
    • 2
  • Weina Fu
    • 1
  • Liqiang He
    • 1
    • 3
    Email author
  • Jiantao Zhou
    • 1
  • Ming Ma
    • 1
  1. 1.College of Computer ScienceInner Mongolia UniversityHohhotChina
  2. 2.School of Physical Science and TechnologyInner Mongolia UniversityHohhotChina
  3. 3.Room A311, Computer Building, Inner Mongolia UniversityHohhotChina

Personalised recommendations