Multimedia Tools and Applications

, Volume 75, Issue 21, pp 13001–13013 | Cite as

Differential trajectory tracking with automatic learning of background reconstruction

  • Weina Fu
  • Jiantao ZhouEmail author
  • Shuai Liu
  • Ming Ma
  • Yingdong Ma


Nowadays, trajectory tracking technology is widely used in many outdoor applications, such as intelligent traffic and video surveillance. However, most of trajectory-tracking technologies rely on a static background, which is hard to obtain in many situations. Obviously, these methods are out of action in the case of dynamic background. In this paper, a novel trajectory tracking method is presented, which is implemented with a new background reconstruction algorithm. Firstly, the background is assumed to be a blank scene. Then, the background is reconstructed by means of video detection that places moving objects in the scene. Finally, real-time trajectories of moving objects are computed based on the reconstructed background. Experimental results show its robustness and practicability even in a cluttered background.


Trajectory tracking Background reconstruction Direction Automatic learning Real-time 



This work is supported by National Natural Science Foundation of China [No: 61262082,61261019, 61461039], Key Project of Chinese Ministry of Education [No.212025], Scientific Projects of Higher School of Inner Mongolia [No. NJZY13004], Natural Science Foundation of Inner Mongolia [No.2014BS0606], Inner Mongolia Science Foundation for Distinguished Young Scholars [2012JQ03], Enhancing Comprehensive Strength Foundation of Inner Mongolia University [No. 14020202],Program of Higher-level talents of Inner Mongolia University (125130, 135103).

The authors would like to express their heartfelt gratitude to all the volunteers in the experiments and the anonymous reviewers, for their help on this paper.

Conflict of interests

The authors declare that there is no conflict of interests regarding the publication of this paper.


  1. 1.
    Du Q, Jiang B, Tang Y et al (2012) Design and Implementation of the Embedded Based Web Camera System [J]. Journal of Software 7(11):2560–2566CrossRefGoogle Scholar
  2. 2.
    Halliday I, Griffin AA, Blackwell AT (1996) Detailed data for 259 fireballs from the Canadian camera network and inferences concerning the influx of large meteoroids [J]. Meteorit Planet Sci 31:185–217CrossRefGoogle Scholar
  3. 3.
    Hou Z, Han C (2006) A survey of visual tracking [j]. Acta Autom Sinica 32(4):603–617Google Scholar
  4. 4.
    Doulamis A, Doulamis N (2004) Optimal content-based video decomposition for interactive video navigation [J]. IEEE Trans Circ Syst Video Technol 14(6):757–775CrossRefzbMATHGoogle Scholar
  5. 5.
    Zhang X, Hu W, Chen S et al (2014) Graph-Embedding-Based Learning for Robust Object Tracking[J]. IEEE Trans Ind Electron 61(2):1072–1084CrossRefGoogle Scholar
  6. 6.
    Babenko B, Yang MH, Belongie S (2011) Robust object tracking with online multiple instance learning [J]. IEEE Trans Pattern Anal Mach Intel 33(8):1619–1632CrossRefGoogle Scholar
  7. 7.
    Ross DA, Lim J, Lin RS et al (2008) Incremental learning for robust visual tracking [J]. Int J Comput Vis 77(1–3):125–141CrossRefGoogle Scholar
  8. 8.
    Collins RT, Liu Y, Leordeanu M (2005) Online selection of discriminative tracking features [J]. IEEE Trans Pattern Anal Mach Intel 27(10):1631–1643CrossRefGoogle Scholar
  9. 9.
    Huo YK, Wei G, Zhang YD (2010) An adaptive threshold for the canny operator of edge detection[C]//Image Analysis and Signal Processing (IASP). IEEE Int Conf 2010:371–374Google Scholar
  10. 10.
    Smith SM, Brady JM (1997) SUSAN—a new approach to low level image processing [J]. Int J Comput Vis 23(1):45–78CrossRefGoogle Scholar
  11. 11.
    Malladi R, Sethian JA, Vemuri BC (1995) Shape modeling with front propagation: A level set approach [J]. IEEE Trans Pattern Anal Mach Intel 17(2):158–175CrossRefGoogle Scholar
  12. 12.
    Schoenemann T, Cremers D (2010) A combinatorial solution for model-based image segmentation and real-time tracking [J]. IEEE Trans Pattern Anal Mach Intel 32(7):1153–1164CrossRefGoogle Scholar
  13. 13.
    Guerrero J, Salcudean SE, McEwen JA et al (2007) Real-time vessel segmentation and tracking for ultrasound imaging applications[J]. IEEE Trans Med 26(8):1079–1090CrossRefGoogle Scholar
  14. 14.
    Lee L, Romano R, Stein G (2000) Introduction to the special section on video surveillance [J]. IEEE Trans Pattern Anal Mach Intel 22(8):745CrossRefGoogle Scholar
  15. 15.
    Ganapathi V, Plagemann C, Koller D (2010) Real time motion capture using a single time-of-flight camera[C]//Computer Vision and Pattern Recognition (CVPR). IEEE Conf IEEE 2010:755–762Google Scholar
  16. 16.
    Sivaraman S, Trivedi MM (2010) A general active-learning framework for on-road vehicle recognition and tracking [J]. IEEE Trans Intel Trans Syst 11(2):267–276CrossRefGoogle Scholar
  17. 17.
    Doulamis ND (2010) Coupled multi-object tracking and labeling for vehicle trajectory estimation and matching[J]. Multimedia Tools Appl 50(1):173–198CrossRefGoogle Scholar
  18. 18.
    Yeo HS, Lee BG, Lim H (2013) Hand tracking and gesture recognition system for human-computer interaction using low-cost hardware[J]. Multimedia Tools Appl 1–29Google Scholar
  19. 19.
    Geiger A, Ziegler J, Stiller C (2011) Stereoscan: Dense 3d reconstruction in real-time[C]//Intelligent Vehicles Symposium (IV), 2011 IEEE. IEEE 963–968Google Scholar
  20. 20.
    Zhang S, Yao H, Sun X et al (2013) Sparse coding based visual tracking: Review and experimental comparison [J]. Pattern Recogn 46(7):1772–1788CrossRefGoogle Scholar
  21. 21.
    Wei X, Zhang P, Chai J (2012) Accurate real time full-body motion capture using a single depth camera [J]. ACM Trans Graph 31(6):188CrossRefGoogle Scholar
  22. 22.
    Fu W, Xu Z, Liu S et al (2011) The capture of moving object in video image [J]. J Multimedia 6(6):518–525CrossRefGoogle Scholar
  23. 23.
    S Liu, W Fu, W Zhao, et al. A Novel Fusion Method by Static and Moving Facial Capture [J]. Mathematical Problems in Engineering, 2013, doi:10.1155/2013/503924Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Weina Fu
    • 1
  • Jiantao Zhou
    • 1
    Email author
  • Shuai Liu
    • 1
  • Ming Ma
    • 1
  • Yingdong Ma
    • 1
  1. 1.College of Computer ScienceInner Mongolia UniversityHohhotChina

Personalised recommendations