Advertisement

Multimedia Tools and Applications

, Volume 75, Issue 4, pp 1947–1962 | Cite as

Steganalysis of LSB matching using differences between nonadjacent pixels

  • Zhihua Xia
  • Xinhui Wang
  • Xingming Sun
  • Quansheng Liu
  • Naixue Xiong
Article

Abstract

This paper models the messages embedded by spatial least significant bit (LSB) matching as independent noises to the cover image, and reveals that the histogram of the differences between pixel gray values is smoothed by the stego bits despite a large distance between the pixels. Using the characteristic function of difference histogram (DHCF), we prove that the center of mass of DHCF (DHCF COM) decreases after messages are embedded. Accordingly, the DHCF COMs are calculated as distinguishing features from the pixel pairs with different distances. The features are calibrated with an image generated by average operation, and then used to train a support vector machine (SVM) classifier. The experimental results prove that the features extracted from the differences between nonadjacent pixels can help to tackle LSB matching as well.

Keywords

Steganalysis LSB matching Difference histogram Characteristic function Support vector machine 

Notes

Acknowledgments

This work is supported by the NSFC (61173141, 61232016, 61202496, 61173142, 61173136, 61103215, 61103141, 61373132, 61373133), GYHY201206033, 201301030, 2013DFG12860, BC2013012, Open Fund of Jiangsu Engineering Center of Network Monitoring (KJR1308) and PAPD fund.

References

  1. 1.
    Anonymous (2011) NRCS photo gallery. Available at: http://photogallery.nrcs.usda.gov/
  2. 2.
    Avcibas I, Sankur B, Sayood K (2002) Statistical evaluation of image quality measures. J Electron Imaging 11:206–223CrossRefGoogle Scholar
  3. 3.
    Burges CJC (1998) A tutorial on support vector machines for pattern recognition. Data Min Knowl Disc 2:121–167CrossRefGoogle Scholar
  4. 4.
    Cai K, Li X, Zeng T et al. (2010) Reliable histogram features for detecting LSB matching. In: 17th IEEE International Conference on Image Processing. IEEE, Beijing, China p 1761–1764Google Scholar
  5. 5.
    Cancelli G, Doerr G, Cox I et al. (2008) Detection of +/−1 LSB steganography based on the amplitude of histogram local extrema. In: IEEE international conference on image processing. San Diego, CA, p 1288–1291Google Scholar
  6. 6.
    Chang C-C, Lin C-J (2001) LIBSVM: a library for support vector machines. Available at: http://www.csie.ntu.edu.tw/~cjlin/libsvm
  7. 7.
  8. 8.
    Fridrich J (2004) Feature-based steganalysis for JPEG images and its implications for future design of steganographic schemes. In: 6th International Workshop Information Hiding. Toronto, Canada, p 67–81Google Scholar
  9. 9.
    Fridrich J, Kodovsky J (2012) Rich models for steganalysis of digital images. IEEE Trans Inf Forensic Secur 7:868–882CrossRefGoogle Scholar
  10. 10.
    Fridrich J, Kodovsky J, Holub V et al. (2011) Steganalysis of Content-Adaptive Steganography in Spatial Domain. In: 13th International Conference on Information Hiding. p 102–117Google Scholar
  11. 11.
    Goljan M, Fridrich J, Holotyak T (2006) New blind steganalysis and its implications. In: Electronic imaging, security, steganography, and watermarking of multimedia contents VIII. International Society for Optics and Photonics, San Jose, CA,, p 1–13Google Scholar
  12. 12.
    Goljan M, Fridrich J, Holotyak T (2006) New blind steganalysis and its implications. In: Security, steganography, and watermarking of multimedia contents VIII. San Jose, CA, p 7201–7201Google Scholar
  13. 13.
    Gong R, Wang H (2012) Steganalysis for GIF images based on colors-gradient co-occurrence matrix. Opt Commun 285:4961–4965CrossRefGoogle Scholar
  14. 14.
    Guo Y-Q, Kong X-W, Wang B et al. (2013) Steganalysis of LSB matching based on the sum features of average co-occurrence matrix using image estimation. In: Digital forensics and watermaking. Springer, p 34–43Google Scholar
  15. 15.
    Harmsen JJ, Pearlman WA (2003) Steganalysis of additive noise modelable information hiding. In: Delp EJ, Wong PW (eds) 5th conference on security and watermarking of multimedia contents. Spie-Int Soc Optical Engineering, Santa Clara, pp 131–142CrossRefGoogle Scholar
  16. 16.
    Harmsen JJ, Pearlman WA (2003) Steganalysis of additive noise modelable information hiding. In: Delp EJ, Wong PW (eds) Security and Watermarking of Multimedia Contents V. Spie-Int Soc Optical Engineering, Santa Clara, pp 131–142CrossRefGoogle Scholar
  17. 17.
    Johnson NF, Jajodia S (1998) Exploring steganography: seeing the unseen. Computer 31:26–34CrossRefGoogle Scholar
  18. 18.
    Ker AD (2005) Steganalysis of LSB matching in grayscale images. IEEE Signal Process Lett 12:441–444CrossRefGoogle Scholar
  19. 19.
    Kodovský J, Fridrich J (2013) Quantitative steganalysis using rich models. In: Electronic imaging, media watermarking, security, and forensics XV. International Society for Optics and Photonics, San Francisco, CA, p 866501–866511Google Scholar
  20. 20.
    Liu Q, Sung AH, Chen Z et al (2008) Feature mining and pattern classification for steganalysis of LSB matching steganography in grayscale images. Pattern Recogn 41:56–66CrossRefzbMATHGoogle Scholar
  21. 21.
    Lou D-C, Chou C-L, Tso H-K et al (2012) Active steganalysis for histogram-shifting based reversible data hiding. Opt Commun 285:2510–2518CrossRefGoogle Scholar
  22. 22.
    Lou D-C, Hu C-H (2012) LSB steganographic method based on reversible histogram transformation function for resisting statistical steganalysis. Inf Sci 188:346–358CrossRefGoogle Scholar
  23. 23.
    Lyu S, Farid H (2006) Steganalysis using higher-order image statistics. IEEE Trans Inf Forensic Secur 1:111–119CrossRefGoogle Scholar
  24. 24.
    Pevny T, Bas P, Fridrich J (2009) Steganalysis by subtractive pixel adjacency matrix. In: 11th ACM Workshop on Multimedia Security Association for Computing Machinery, Princeton, NJ, United States, p 75–83Google Scholar
  25. 25.
    Pevny T, Bas P, Fridrich J (2010) Steganalysis by subtractive pixel adjacency matrix. IEEE Trans Inf Forensic Secur 5:215–224CrossRefGoogle Scholar
  26. 26.
    Pevny T, Fridrich J, Ker AD (2012) From blind to quantitative steganalysis. IEEE Trans Inf Forensic Secur 7:445–454CrossRefGoogle Scholar
  27. 27.
    Xia Z, Wang S, Sun X et al (2013) Steganalysis of least significant bit matching based on image histogram and correlation. J Electron Imaging 22:033008–033008CrossRefGoogle Scholar
  28. 28.
    Xiong G, Ping X, Zhang T et al (2012) Image textural features for steganalysis of spatial domain steganography. J Electron Imaging 21:033015CrossRefGoogle Scholar
  29. 29.
    Yanli Z, Yan L (2012) A novel LSB matching steganalysis detection algorithm based on characteristics of the second order difference Markov. In: International conference on management of e-Commerce and e-Government. IEEE, Beijing p 68–71Google Scholar
  30. 30.
    Zhang J, Cox IJ, Doerr G (2007) Steganalysis for LSB matching in images with high-frequency noise. In: IEEE ninth workshop on multimedia signal processing. Chania, Greece, p 385–388Google Scholar
  31. 31.
    Zhang J, Hu Y, Yuan Z (2009) Detection of LSB matching steganography using the envelope of histogram. J Comput 4:646–653Google Scholar
  32. 32.
    Zhang H, Ping X, Xu M et al (2014) Steganalysis by subtractive pixel adjacency matrix and dimensionality reduction. Sci China Inf Sci 57:048101Google Scholar
  33. 33.
    Zheng E, Ping X, Zhang T et al. (2010) Steganalysis of LSB matching based on local variance histogram In: IEEE International Conference on Image Processing. IEEE, Hong Kong, p 1005–1008Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Zhihua Xia
    • 1
    • 2
  • Xinhui Wang
    • 1
    • 2
  • Xingming Sun
    • 1
    • 2
  • Quansheng Liu
    • 3
  • Naixue Xiong
    • 4
  1. 1.Jiangsu Engineering Center of Network MonitoringNanjing University of Information Science & TechnologyNanjingChina
  2. 2.School of Computer & SoftwareNanjing University of Information Science & TechnologyNanjingChina
  3. 3.UMR6205, LMBA, Campus de TohannicUniversité de Bretagne-SudVannesFrance
  4. 4.School of Computer ScienceColorado Technical UniversityColorado SpringUSA

Personalised recommendations